Amari S. (2001). Information geometry on hierarchical decomposition of stochastic interactions IEEE Transaction On Information Theory. 47
Amari S, Nagaoka H. (2000). Methods of information geometry.
Amari SI. (1985). Differential-geometrical methods in statistics.
Amari SI, Han TS. (1989). Statistical inference under multiterminal rate restrictions: A differential geometric approach IEEE Trans Inform Theory. 35
Amari SI, Kawanabe M. (1997). Information geometry of estimating functions in semiparametric statistical models Bernoulli. 1
Godambe VP. (1976). Conditional likelihood and unconditional optimum estimating equations Biometrika. 63
Godambe VP. (1991). Estimating functions.
Holt GR, Softky WR, Koch C, Douglas RJ. (1996). Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. Journal of neurophysiology. 75 [PubMed]
Murata T, Matsui N, Miyauchi S, Kakita Y, Yanagida T. (2003). Discrete stochastic process underlying perceptual rivalry. Neuroreport. 14 [PubMed]
Shinomoto S, Okada M, Miura K. (2004). Search for optimal measure to discriminate random and regular spike trains Tech. Rep. No. NC2004-52.
Shinomoto S, Sakai Y, Funahashi S. (1999). The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural computation. 11 [PubMed]
Shinomoto S, Shima K, Tanji J. (2002). New classification scheme of cortical sites with the neuronal spiking characteristics. Neural networks : the official journal of the International Neural Network Society. 15 [PubMed]
Shinomoto S, Shima K, Tanji J. (2003). Differences in spiking patterns among cortical neurons. Neural computation. 15 [PubMed]
Miura K, Okada M, Amari S. (2006). Estimating spiking irregularities under changing environments. Neural computation. 18 [PubMed]