Bates DM, Watts DG. (1988). Nonlinear regression analysis and its applications.
Dreyfus G, Dreyfus C. (2003). A machine learning approach to the estimation of the liquidus temperature of glassforming oxide blends J Non-Crystalline Solids. 318
Dreyfus G, Monari G. (2000). Withdrawing an example from the training set: An analytic estimation of its effect on a nonlinear parameterized model Neurocomputing. 35
Hansen LK, Larsen J. (1996). Linear unlearning for cross-validation Advances In Computational Mathematics. 5
Hansen LK, Larsen J. (2001). Comments for: Rivals I., Personnaz L., Construction of confidence intervals for neural networks based on least squares estimation Neural Netw. 15
Hansen LK, Larsen J, Sorensen PH, Norgard M. (1996). Cross-validation with LULOO Proceedings of the International Conference on Neural Information Processing-ICONIP96.
Monari G. (1999). Selection de modeles non lineaires par leave-one-out: etude theorique et application des reseaux de neurones au procede de soudage par points.
Monari G, Dreyfus G. (2002). Local overfitting control via leverages. Neural computation. 14 [PubMed]
Personnaz L, Rivals I. (1998). Construction of confidence intervals in neural modeling using a linear Taylor expansion Proceedings of the International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling.
Personnaz L, Rivals I. (2003). MLPs (mono-layer polynomials and multi-layer perceptrons) for nonlinear modeling J Mach Learn Res. 3
Rivals I, Personnaz L. (2000). Construction of confidence intervals for neural networks based on least squares estimation. Neural networks : the official journal of the International Neural Network Society. 13 [PubMed]
Seber GAF, Wild CJ. (1989). Nonlinear regression.
Tibshirani RJ. (1996). A comparison of some error estimates for neural models Neural Comput. 8