Blanchard G. (2004). Different Paradigms for Choosing Sequential Reweighting Algorithms Neural Comput. 16

See more from authors: Blanchard G

References and models cited by this paper

Amit Y, Blanchard G. (2001). Multiple randomized classifiers: MRCL Tech Rep (Available on-line: http:--galton.uchicago.edu-~amit-Papers-).

Amit Y, Geman D. (1997). Shape quantization and recognition with randomized trees Neural Comput. 9

Bartlett P, Freund Y, Schapire RE, Lee WS. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods Ann Stat. 26

Blackwell D. (1956). An analog of the minmax theorem for vector payoffs Pacific Journal Of Mathematics. 6

Blanchard G. (2001). Mixture and aggregation of estimators for pattern recognition: Application to decision trees Unpublished doctoral dissertation (Available on-line: http:--www.math.u-psud.fr-~blanchard-publi-these.ps.gz).

Blanchard G. (2003). Generalization error bounds for aggregate classifiers Nonlinear estimation and classification.

Breiman L. (1998). Arcing classifiers (with discussion) Ann Stat. 26

Breiman L. (1998). Prediction games and arcing algorithms Tech Rep (Available on-line: ftp:--ftp.stat.berkeley.edu-pub-users-breiman-games.ps.Z).

Breiman L. (2001). Random forests Mach Learn. 45

Devroye L, Gyorfi L, Lugosi G. (1996). A probabilistic theory of pattern recognition.

Dietterich TG. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization Mach Learn. 40

Frean M, Downs T. (1998). A simple cost function for boosting Tech Rep (Available on-line: http:--www.boosting.org-papers-FreDow98.ps.gz).

Freund Y, Schapire R. (1996). Experiment with a new boosting algorithm Proc. of the 13th International Conference on Machine Learning.

Freund Y, Schapire RE. (1996). Game theory, on-line prediction and boosting Proceedings of the Ninth Annual Conference on Computational Learning Theory.

Hart S, Mas-colell A. (2001). A general class of adaptive strategies J Economic Theory. 98

Meir R, Ratsch G. (2003). An introduction to Boosting and leveraging Advanced lectures on machine learning (Available on-line: http:--www.boosting.org-papers-MeiRae03.ps.gz).

Mika S. (2002). Kernel fisher discriminants Unpublished doctoral dissertation.

Muller KR, Ratsch G, Onoda T. (1998). An asymptotic analysis of AdaBoost in the binary classification case Proc. of the Int. Conf. on Artificial Neural Networks (ICANN'98).

Muller KR, Ratsch G, Onoda T. (2001). Soft margins for AdaBoost Mach Learn. 42

Panchenko D, Koltchinkskii V. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers Ann Stat. 30

Ratsch G, Warmuth M. (2001). Marginal boosting Tech Rep.

Scholkopf B, Muller KR, Mika S, Ratsch G. (2002). Constructing Boosting algorithms from SVMs: An application to one-class classification IEEE PAMI. 24

Scholkopf B, Smola AJ, Bartlett PL, Schuurmans D. (2000). Advances in large margin classifiers.

Schuurmans D, Grove AJ. (1998). Boosting in the limit: Maximizing the margin of learned ensembles Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98).

Tibshirani R, Hastie T, Friedman J. (2000). Additive logistic regression: A statictical view of boosting Ann Stat. 28

Viola P, Jones MJ. (2001). Robust real-time object detection Tech. Rep. CRL2001-01.

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.