Almeida LB. (2000). Linear and nonlinear ICA based on mutual information Proceedings of AS-SPCC00.
Amari S, Yang HH. (1997). Adaptive on-line learning algorithms for blind separation: Maximum entropy and minimum mutual information Neural Comput. 9
Amari SI. (1985). Differential-geometrical methods in statistics.
Amari SI. (1997). Neural learning in structured parameter spaces-natural Riemmanian gradient Advances in neural information processing systems. 9
Amari SL, Cichocki A, Yang HH. (1996). A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems.. 8
Barndorff-nielsen OE. (1978). Information and exponential families in statistical theory.
Bell AJ, Sejnowski TJ. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural computation. 7 [PubMed]
Cardoso JF. (1994). On the performance of orthogonal source separation algorithms Proceedings Of EUSIPCO94. 94
Cardoso JF. (1998). Blind source separation: Statistical principles Proc IEEE. 86
Cardoso JF. (1999). High-order contrasts for independent component analysis. Neural computation. 11 [PubMed]
Cardoso JF, Souloumiac A. (1993). Blind beamforming for non-gaussian signals Proc IEEE. 140
Comon P. (1994). Independent component analysis, a new concept? Signal Processing. 36
Comon P. (1996). Contrasts for multichannel blind deconvolution IEEE Signal Processing Letters. 3
Cover TM, Thomas JA. (1991). Elements of Information Theory.
Crain BR. (1974). Estimation of distributions using orthogonal expansions Ann Stat. 2
Douglas SC, Sun X. (2001). Adaptive paraunitary filter banks for contrast-based multichannel blind deconvolution Proc ICASSP. 01
Erdogmus D, Principe JC, Hild_II KE. (2001). Independent component analysis using Renyi's mutual information and Legendre density estimation Proc IJCNN01.
Erdogmus D, Principe JC, Hild_II KE. (2001). Blind source separation using Renyi's mutual information IEEE Signal Processing Letters. 8
Erdogmus D, Principe JC, Rao YN, Hild_II KE. (2003). Independent component analysis using Jaynes maximum entropy principle Proc ICA (Available on-line: http:--www.kecl.ntt.co.jp-icl-signal-ica2003-cdrom-index.htm).
Feder M, Weinstein E, Oppenheim A. (1993). Multi-channel signal separation by decorrelation IEEE Trans Speech Audio Processing. 1
Girolami M. (1997). Symmetric adaptive maximum likelihood estimation for noise cancellation and signal estimation Electronic Letters. 33
Girolami M. (2002). Orthogonal series density estimation and the kernel eigenvalue problem. Neural computation. 14 [PubMed]
Girolami M, Fyfe C. (1997). Kurtosis extrema and identification of independent components: A neural network approach Proc ICASSP.
Golub GH, van_Loan CF. (1996). Matrix computations.
Hyvarinen A. (1998). New approximations of differential entropy for independent component analysis and projection pursuit Advances in neural information processing systems. 10
Hyvarinen A. (1999). Survey on Independent Component Analysis Neural Computing Surveys. 2
Hyvärinen A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on neural networks. 10 [PubMed]
Jaynes ET. (1957). Information theory and statistical mechanics Phys Rev. 106
Jutten C, Vignat C, Loubaton P, Simon C, dUrso G. (1998). Blind source separation of convolutive mixtures by maximizing of fourth-order cumulants: The non-IID case Pro ICASSIP. 98
Kapur J, Kesavan H. (1992). Entropy optimization principles and applications.
Karvanen J, Eriksson J, Koivunen V. (2000). Maximum likelihood estimation of ICA model for wide class of source distributions Proc NNSP. 00
Oja E. (1999). The nonlinear PCA learning rule in independent component analysis Proc ICA.
Parzen E. (1962). On the estimation of a probability density function and mode Ann Math Stat. 33
Pham DT. (1996). Blind separation of instantaneous mixture sources via an independent component analysis IEEE Trans Signal Processing. 44
Pham DT. (2001). Blind separation of instantaneous mixture of sources via the gaussian mutual information criterion Signal Processing. 81
Principe JC, Wu HC. (1997). A unifying criterion for blind source separation and decorrelation: Simultaneous diagonalization of correlation matrices Proc NNSP.
Principe JC, Wu HC. (1999). A gaussianity measure for blind source separation insensitive to the sign of kurtosis Proc NNSP.
Principe JC, Wu HC. (1999). Generalized anti-Hebbian learning for source separation Proc ICASSP.
Principe JC, Xu D. (1999). Information theoretic learning using Renyis quadratic entropy Proc ICA.
Principe JC, Xu D, Fisher J, Wu HC. (1998). A novel measure for independent component analysis Proc ICASSP.
Renyi A. (1970). Probability theory.
Shore JE, Johnson RW. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy IEEE Trans Information Theory. 26
Spence C, Parra L. (2000). Convolutive blind source separation of nonstationary sources IEEE Trans Speech Audio Process. 8
Torkkola K. (1996). Blind separation of delayed sources based on information maximization Proc NNSP.
Torkkola K. (1999). Blind separation for audio signals-are we there yet? Proc ICA.