Barak O, Tsodyks M. (2007). Persistent activity in neural networks with dynamic synapses. PLoS computational biology. 3 [PubMed]

See more from authors: Barak O · Tsodyks M

References and models cited by this paper

Amit DJ. (1989). Modeling Brain Function: the World of Attractor Neural Networks.

Barash S. (2003). Paradoxical activities: insight into the relationship of parietal and prefrontal cortices. Trends in neurosciences. 26 [PubMed]

Bibitchkov D, Herrmann JM, Geisel T. (2002). Pattern storage and processing in attractor networks with short-time synaptic dynamics. Network (Bristol, England). 13 [PubMed]

Dayan P, Abbott L. (2001). Neural encoding: Firing rates and spike statistics Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems.

Fransén E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA. (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron. 49 [PubMed]

Fuster JM, Alexander GE. (1971). Neuron activity related to short-term memory. Science (New York, N.Y.). 173 [PubMed]

Goldman-Rakic PS. (1995). Cellular basis of working memory. Neuron. 14 [PubMed]

Holcman D, Tsodyks M. (2006). The emergence of Up and Down states in cortical networks. PLoS computational biology. 2 [PubMed]

Hopfield JJ. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America. 79 [PubMed]

Koulakov AA, Raghavachari S, Kepecs A, Lisman JE. (2002). Model for a robust neural integrator. Nature neuroscience. 5 [PubMed]

Markram H, Wang Y, Tsodyks M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America. 95 [PubMed]

Miller EK, Erickson CA, Desimone R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

Miller P, Brody CD, Romo R, Wang XJ. (2003). A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. Cerebral cortex (New York, N.Y. : 1991). 13 [PubMed]

Miyashita Y. (1988). Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature. 335 [PubMed]

Riehle A, Grün S, Diesmann M, Aertsen A. (1997). Spike synchronization and rate modulation differentially involved in motor cortical function. Science (New York, N.Y.). 278 [PubMed]

Romani S, Amit DJ, Mongillo G. (2006). Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. Journal of computational neuroscience. 20 [PubMed]

Sejnowski TJ, Tsodyks MV. (1995). Rapid state switching in balanced cortical network models Network. 6

Thomson AM. (1997). Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. The Journal of physiology. 502 ( Pt 1) [PubMed]

Thomson AM, Deuchars J. (1994). Temporal and spatial properties of local circuits in neocortex. Trends in neurosciences. 17 [PubMed]

Tsodyks M, Pawelzik K, Markram H. (1998). Neural networks with dynamic synapses. Neural computation. 10 [PubMed]

Tsodyks M, Uziel A, Markram H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Wang Y et al. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience. 9 [PubMed]

Willshaw DJ, Buneman OP, Longuet-Higgins HC. (1969). Non-holographic associative memory. Nature. 222 [PubMed]

Zhang M, Barash S. (2004). Persistent LIP activity in memory antisaccades: working memory for a sensorimotor transformation. Journal of neurophysiology. 91 [PubMed]

van Vreeswijk C, Sompolinsky H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science (New York, N.Y.). 274 [PubMed]

References and models that cite this paper

Esposito U, Giugliano M, Vasilaki E. (2014). Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity. Frontiers in computational neuroscience. 8 [PubMed]

Hayut I, Fanselow EE, Connors BW, Golomb D. (2011). LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS computational biology. 7 [PubMed]

Khalil R, Moftah MZ, Moustafa AA. (2017). The effects of dynamical synapses on firing rate activity: a spiking neural network model. The European journal of neuroscience. 46 [PubMed]

Scorcioni R, Hamilton DJ, Ascoli GA. (2008). Self-sustaining non-repetitive activity in a large scale neuronal-level model of the hippocampal circuit. Neural networks : the official journal of the International Neural Network Society. 21 [PubMed]

Testa-Silva G et al. (2012). Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism. Cerebral cortex (New York, N.Y. : 1991). 22 [PubMed]

Vasilaki E, Giugliano M. (2014). Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PloS one. 9 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.