Babadi B. (2005). Bursting as an effective relay mode in a minimal thalamic model. Journal of computational neuroscience. 18 [PubMed]
Carey RM, Sherwood WE, Shipley MT, Borisyuk A, Wachowiak M. (2015). Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb. Journal of neurophysiology. 113 [PubMed]
Doiron B, Oswald AM, Maler L. (2007). Interval coding. II. Dendrite-dependent mechanisms. Journal of neurophysiology. 97 [PubMed]
Mehaffey WH, Fernandez FR, Maler L, Turner RW. (2007). Regulation of burst dynamics improves differential encoding of stimulus frequency by spike train segregation. Journal of neurophysiology. 98 [PubMed]
Montemurro MA et al. (2007). Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. Journal of neurophysiology. 98 [PubMed]
Polsky A, Mel B, Schiller J. (2009). Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]
Stiesberg GR, Reyes MB, Varona P, Pinto RD, Huerta R. (2007). Connection topology selection in central pattern generators by maximizing the gain of information. Neural computation. 19 [PubMed]
Tripp B, Eliasmith C. (2007). Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]
Zeldenrust F, Chameau P, Wadman WJ. (2018). Spike and burst coding in thalamocortical relay cells. PLoS computational biology. 14 [PubMed]
Zeldenrust F, Chameau PJ, Wadman WJ. (2013). Reliability of spike and burst firing in thalamocortical relay cells. Journal of computational neuroscience. 35 [PubMed]