"... We developed a detailed biophysical model of STDP and found that the model required spike timing-dependent distinct suppression of NMDARs by Ca2+-calmodulin. This led us to predict an allosteric kinetics of NMDARs: a slow and rapid suppression of NMDARs by Ca2+-calmodulin with prespiking -> postspiking and postspiking -> prespiking, respectively. We found that the allosteric kinetics, but not the conventional kinetics, is consistent with specific features of amplitudes and peak time of NMDAR-mediated EPSPs in experiments. ..." See paper for more and details.
Model Type: Channel/Receptor
Currents: I Na,t; I A; I K; I Calcium
Model Concept(s): Ion Channel Kinetics; Signaling pathways; STDP
Simulation Environment: GENESIS (web link to model)
References:
Urakubo H, Honda M, Froemke RC, Kuroda S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]