"We study a network of m identical excitatory cells projecting excitatory synaptic connections onto a single inhibitory interneuron, which is reciprocally coupled to all excitatory cells through inhibitory synapses possessing short-term synaptic depression. We find that such a network with global inhibition possesses multiple stable activity patterns with distinct periods, characterized by the clustering of the excitatory cells into synchronized sub-populations. We prove the existence and stability of n-cluster solutions in a m-cell network. ... Implications for temporal coding and memory storage are discussed."
Model Type: Realistic Network
Region(s) or Organism(s): Hippocampus
Model Concept(s): Temporal Pattern Generation; Simplified Models; Short-term Synaptic Plasticity; Depression; Attractor Neural Network
Simulation Environment: MATLAB (web link to model)
References:
Chandrasekaran L, Matveev V, Bose A. (2009). Multistability of clustered states in a globally inhibitory network Physica D: Nonlinear Phenomena. 238(3)