Oscillations, phase-of-firing coding and STDP: an efficient learning scheme (Masquelier et al. 2009)


The model demonstrates how a common oscillatory drive for a group of neurons formats and reliabilizes their spike times - through an activation-to-phase conversion - so that repeating activation patterns can be easily detected and learned by a downstream neuron equipped with STDP, and then recognized in just one oscillation cycle.

Model Type: Realistic Network

Cell Type(s): Abstract integrate-and-fire leaky neuron

Model Concept(s): Pattern Recognition; Activity Patterns; Coincidence Detection; Temporal Pattern Generation; Oscillations; Synchronization; Spatio-temporal Activity Patterns; Synaptic Plasticity; Long-term Synaptic Plasticity; Unsupervised Learning; STDP

Simulation Environment: Brian; Python

Implementer(s): Masquelier, Tim [timothee.masquelier at alum.mit.edu]

References:

Masquelier T, Hugues E, Deco G, Thorpe SJ. (2009). Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.