"Windup is characterized as a frequency-dependent increase in the number of evoked action potentials in dorsal horn neurons in response to electrical stimulation of afferent C-fibers. ... The approach presented here relies on mathematical and computational analysis to study the mechanism(s) underlying windup. From experimentally obtained windup profiles, we extract the time scale of the facilitation mechanisms that may support the characteristics of windup. Guided by these values and using simulations of a biologically realistic compartmental model of a wide dynamic range (WDR) neuron, we are able to assess the contribution of each mechanism for the generation of action potentials windup. ..."
Model Type: Neuron or other electrically excitable cell
Cell Type(s): Wide dynamic range neuron
Currents: I Na,p; I Na,t; I L high threshold; I N; I K; I K,Ca
Model Concept(s): Activity Patterns; Action Potentials
Simulation Environment: NEURON; MATLAB
References:
Aguiar P, Sousa M, Lima D. (2010). NMDA channels together with L-type calcium currents and calcium-activated nonspecific cationic currents are sufficient to generate windup in WDR neurons. Journal of neurophysiology. 104 [PubMed]