Selective control of cortical axonal spikes by a slowly inactivating K+ current (Shu et al. 2007)


We discovered a low-threshold, slowly inactivating K+ current, containing Kv1.2 alpha subunits, in axon initial segment, playing a key role in the modulation of spike threshold and spike duration as well as the spike timing in prefrontal cortex layer V pyramidal cell of ferrets and rats. A kd.mod file implements this D current and put it in the axonal model: Neuron_Dcurrent.hoc. Run the model to see the gradual modulation effect over seconds on spike shape.

Model Type: Neuron or other electrically excitable cell; Axon

Region(s) or Organism(s): Neocortex

Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell

Currents: I Na,t; I K; I h; I Potassium

Genes: Kv1.2 KCNA2

Model Concept(s): Action Potential Initiation; Action Potentials

Simulation Environment: NEURON

References:

Shu Y, Yu Y, Yang J, McCormick DA. (2007). Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.