Optimal sparse olfactory representations persist in a plastic network (Assisi et al 2019)


"Kenyon cells (KCs) of the mushroom body represent odors as a sparse code. When viewed from the perspective of follower neurons, mushroom body output neurons (MBONs) reveal an optimal level of coding sparseness that maximally separates the representations of odors. However, the KC–MBON synapse is highly plastic and may be potentiated or depressed by odor–driven experience that could, in turn, disrupt the optimality formed by pre–synaptic circuits. Contrary to this expectation, we show that synaptic plasticity based on spike timing of pre- and postsynaptic neurons improves the ability of the system to distinguish between the representations of similar odors while preserving the optimality determined by pre–synaptic circuits."

Cell Type(s): Abstract Rulkov-Bazhenov map neurons

Simulation Environment: C or C++ program

References:

Assisi C, Stopfer M, Bazhenov M. (2020). Optimality of sparse olfactory representations is not affected by network plasticity. PLoS computational biology. 16 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.