Learning to navigate a complex environment is not a difficult task for a mammal. For example, finding the correct way to exit a maze following a sequence of cues, does not need a long training session. Just a single or a few runs through a new environment is, in most cases, sufficient to learn an exit path starting from anywhere in the maze. This ability is in striking contrast with the well-known difficulty that any deep learning algorithm has in learning a trajectory through a sequence of objects. Being able to learn an arbitrarily long sequence of objects to reach a specific place could take, in general, prohibitively long training sessions. This is a clear indication that current artificial intelligence methods are essentially unable to capture the way in which a real brain implements a cognitive function. In previous work, we have proposed a proof-of-principle model demonstrating how, using hippocampal circuitry, it is possible to learn an arbitrary sequence of known objects in a single trial. We called this model SLT (Single Learning Trial). In the current work, we extend this model, which we will call e-STL, to introduce the capability of navigating a classic four-arms maze to learn, in a single trial, the correct path to reach an exit ignoring dead ends. We show the conditions under which the e- SLT network, including cells coding for places, head-direction, and objects, can robustly and efficiently implement a fundamental cognitive function. The results shed light on the possible circuit organization and operation of the hippocampus and may represent the building block of a new generation of artificial intelligence algorithms for spatial navigation.
Model Type: Realistic Network
Cell Type(s): Abstract integrate-and-fire leaky neuron
Model Concept(s): Place cell/field; Direction Selectivity; Persistent activity
Simulation Environment: PyNN; Python
References:
Coppolino S, Migliore M. (2023). An explainable artificial intelligence approach to spatial navigation based on hippocampal circuitry Neural Networks. 163