Stochastic automata network Markov model descriptors of coupled Ca2+ channels (Nguyen et al. 2005)


"... Here we present a formalism by which mathematical models for Ca2+-regulated Ca2+ release sites are derived from stochastic models of single-channel gating that include Ca2+ activation, Ca2+ inactivation, or both. Such models are stochastic automata networks (SANs) that involve a large number of functional transitions, that is, the transition probabilities of the infinitesimal generator matrix of one of the automata (i.e., an individual channel) may depend on the local [Ca2+] and thus the state of the other channels. Simulation and analysis of the SAN descriptors representing homogeneous clusters of intracellular Ca2+ channels show that (1) release site density can modify both the steady-state open probability and stochastic excitability of Ca2+ release sites, (2) Ca2+ inactivation is not a requirement for Ca2+ puffs or sparks, and (3) a single-channel model with a bell-shaped open probability curve does not lead to release site activity that is a biphasic function of release site density. ..."

Model Type: Channel/Receptor

Currents: I Calcium

Model Concept(s): Ion Channel Kinetics; Calcium dynamics; Markov-type model

Simulation Environment: CalC Calcium Calculator (web link to model)

Implementer(s): Matveev, Victor V. [m a t v e e v at n j i t . e d u ]

References:

Nguyen V, Mathias R, Smith GD. (2005). A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels. Bulletin of mathematical biology. 67 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.