A finite volume method for stochastic integrate-and-fire models (Marpeau et al. 2009)


Marpeau F, Barua A, Josić K. (2009). A finite volume method for stochastic integrate-and-fire models. Journal of computational neuroscience. 26 [PubMed]

See more from authors: Marpeau F · Barua A · Josić K

References and models cited by this paper

Apfaltrer F, Ly C, Tranchina D. (2006). Population density methods for stochastic neurons with realistic synaptic kinetics: firing rate dynamics and fast computational methods. Network (Bristol, England). 17 [PubMed]

Barth T, Ohlberger M. (2004). Finite volume methods: Foundation and analysis Encyclopedia of computational mechanics.

Brunel N, Chance FS, Fourcaud N, Abbott LF. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical review letters. 86 [PubMed]

Brunel N, Hakim V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural computation. 11 [PubMed]

Brunel N, Latham PE. (2003). Firing rate of the noisy quadratic integrate-and-fire neuron. Neural computation. 15 [PubMed]

Burkitt AN. (2006). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological cybernetics. 95 [PubMed]

Courant R, Friedrichs K, Lewy H. (1928). Uber die partiellen differenzengleichungen der mathematischen Physik. Mathematische Annalen. 100(1)

Doiron B, Chacron MJ, Maler L, Longtin A, Bastian J. (2003). Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature. 421 [PubMed]

Ermentrout GB, Urban NN, Galan RF. (2007). Stochastic dynamics of uncoupled neural oscillators: Fokker-Planck studies with the finite element method. Physical Review E. 76

Gardiner C. (1985). Handbook of Stochastic Methods.

Godlewski E, Raviart PA. (1990). Hyperbolic systems of conservation laws. Mathematiques et applications. 3-4

Harten A. (1983). High resolution schemes for hyperbolic conservation laws Journal Of Computational Physics. 49

Kloeden PE, Platen E. (1992). Numerical Solution Of Stochastic Differential Equations.

Kopell N, Ermentrout GB. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. Siam J Appl Math. 46

Lapicque L. (1907). Recherches quantitatives sur lexcitation electrique des nerfs traitee comme une polarisation J Physiol Pathol Gen. 9

Lascaux P, Theodor R. (). Analyse numerique matricielle appliquee à l'Art de l'Ingenieur. 1,2

Latham PE, Richmond BJ, Nelson PG, Nirenberg S. (2000). Intrinsic dynamics in neuronal networks. I. Theory. Journal of neurophysiology. 83 [PubMed]

Lindner B. (2001). Coherence and stochastic resonance in nonlinear dynamical systems Ph.D. thesis.

Lindner B, Longtin A. (2006). Comment on "Characterization of subthreshold voltage fluctuations in neuronal membranes," by M. Rudolph and A. Destexhe. Neural computation. 18 [PubMed]

Lindner B, Schimansky-Geier L. (2001). Transmission of noise coded versus additive signals through a neuronal ensemble. Physical review letters. 86 [PubMed]

Marpeau F, Bruneau CH, Saad M. (2005). Numerical simulation of the miscible displacement of radionuclides in a heterogeneous porous medium International Journal For Numerical Methods In Fluids. 49(10)

Mattia M, Del Giudice P. (2002). Population dynamics of interacting spiking neurons. Physical review. E, Statistical, nonlinear, and soft matter physics. 66 [PubMed]

Mattia M, Del_giudice P. (2004). Finite-size dynamics of inhibitory and excitatory interacting spiking neurons Physical Review. 70(5)

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. (2007). Numerical recipes: the art of scientific computing 3rd edition.

Rall W. (1995). The Theoretical Foundation Of Dendritic Function.

Risken H. (1989). The Fokker-Planck Equation (2nd ed).

Roe PL. (1984). Generalized formulation of TVD Lax-Wendroff schemes. ICASE Rep.

Rudolph M, Destexhe A. (2005). An extended analytic expression for the membrane potential distribution of conductance-based synaptic noise. Neural computation. 17 [PubMed]

Strang G. (1968). On the construction and comparison of difference schemes Siam Journal On Numerical Analysis. 5

Sweby PK. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. Siam Journal On Numerical Analysis. 21

Toro EF. (2001). Godunov methods: Theory and applications.

Tuckwell HC. (1988). Introduction To Theoretical Neurobiology: Vol 1, Linear Cable Theory And Dendritic Structure. 1

Tuckwell HC. (1989). Stochastic Processes In The Neurosciences.

Wang X-J, Brunel N, Renart A. (2003). Mean-field theory of recurrent cortical networks: from irregularly spiking neurons to working memory Computational neuroscience: a comprehensive approach.

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.