Badel L et al. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of neurophysiology. 99 [PubMed]
Banerjee A. (2006). On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons. Journal of computational neuroscience. 20 [PubMed]
Brette R. (2004). Dynamics of one-dimensional spiking neuron models. Journal of mathematical biology. 48 [PubMed]
Brette R, Gerstner W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of neurophysiology. 94 [PubMed]
Börgers C, Kopell N. (2005). Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural computation. 17 [PubMed]
Börgers C, Kopell NJ. (2008). Gamma oscillations and stimulus selection. Neural computation. 20 [PubMed]
Carrillo RR, Ros E, Barbour B, Boucheny C, Coenen O. (2007). Event-driven simulation of neural population synchronization facilitated by electrical coupling. Bio Systems. 87 [PubMed]
Chizhov AV, Zefirov AV, Amakhin DV, Smirnova EY, Zaitsev AV. (2018). Minimal model of interictal and ictal discharges "Epileptor-2". PLoS computational biology. 14 [PubMed]
Coop AD, Reeke GN. (2001). The composite neuron: a realistic one-compartment Purkinje cell model suitable for large-scale neuronal network simulations. Journal of computational neuroscience. 10 [PubMed]
Dragly SA et al. (2017). Neuronify: An Educational Simulator for Neural Circuits. eNeuro. 4 [PubMed]
Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35
Ferguson KA, Njap F, Nicola W, Skinner FK, Campbell SA. (2015). Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus. Journal of computational neuroscience. 39 [PubMed]
Golomb D, Shedmi A, Curtu R, Ermentrout GB. (2006). Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. Journal of neurophysiology. 95 [PubMed]
Gutkin B, Ermentrout GB, Rudolph M. (2003). Spike generating dynamics and the conditions for spike-time precision in cortical neurons. Journal of computational neuroscience. 15 [PubMed]
Hansel D, Mato G. (2003). Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural computation. 15 [PubMed]
Humphries MD, Gurney K, Prescott TJ. (2007). Is there a brainstem substrate for action selection? Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 362 [PubMed]
Izhikevich EM. (2004). Which model to use for cortical spiking neurons? IEEE transactions on neural networks. 15 [PubMed]
Jalil S, Grigull J, Skinner FK. (2004). Novel bursting patterns emerging from model inhibitory networks with synaptic depression. Journal of computational neuroscience. 17 [PubMed]
Jercog D et al. (2017). UP-DOWN cortical dynamics reflect state transitions in a bistable network. eLife. 6 [PubMed]
Jolivet R, Gerstner W. (2004). Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. Journal of physiology, Paris. 98 [PubMed]
Jolivet R, Lewis TJ, Gerstner W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of neurophysiology. 92 [PubMed]
Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]
Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain research. 941 [PubMed]
Kumar A, Schrader S, Aertsen A, Rotter S. (2008). The high-conductance state of cortical networks. Neural computation. 20 [PubMed]
Laing CR, Longtin A. (2003). Dynamics of deterministic and stochastic paired excitatory-inhibitory delayed feedback. Neural computation. 15 [PubMed]
Latham PE, Nirenberg S. (2004). Computing and stability in cortical networks. Neural computation. 16 [PubMed]
Loebel A, Tsodyks M. (2002). Computation by ensemble synchronization in recurrent networks with synaptic depression. Journal of computational neuroscience. 13 [PubMed]
Ma J, Wu J. (2007). Multistability in spiking neuron models of delayed recurrent inhibitory loops. Neural computation. 19 [PubMed]
Marpeau F, Barua A, Josić K. (2009). A finite volume method for stochastic integrate-and-fire models. Journal of computational neuroscience. 26 [PubMed]
Matsubara T, Torikai H. (2016). An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities. IEEE transactions on neural networks and learning systems. 27 [PubMed]
Mensi S et al. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of neurophysiology. 107 [PubMed]
Muller E, Buesing L, Schemmel J, Meier K. (2007). Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural computation. 19 [PubMed]
Muresan RC, Savin C. (2007). Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. Journal of neurophysiology. 97 [PubMed]
Pfeuty B, Mato G, Golomb D, Hansel D. (2005). The combined effects of inhibitory and electrical synapses in synchrony. Neural computation. 17 [PubMed]
Rudolph M, Destexhe A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural computation. 18 [PubMed]
Stewart RD, Bair W. (2009). Spiking neural network simulation: numerical integration with the Parker-Sochacki method. Journal of computational neuroscience. 27 [PubMed]
Tabak J, Mascagni M, Bertram R. (2010). Mechanism for the universal pattern of activity in developing neuronal networks. Journal of neurophysiology. 103 [PubMed]
Tabak J, O'Donovan MJ, Rinzel J. (2006). Differential control of active and silent phases in relaxation models of neuronal rhythms. Journal of computational neuroscience. 21 [PubMed]
Thomas EA, Bornstein JC. (2003). Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission. Neuroscience. 120 [PubMed]
Tonnelier A, Belmabrouk H, Martinez D. (2007). Event-driven simulations of nonlinear integrate-and-fire neurons. Neural computation. 19 [PubMed]
Troyer TW. (2006). Factors affecting phase synchronization in integrate-and-fire oscillators. Journal of computational neuroscience. 20 [PubMed]
Vich C, Berg RW, Guillamon A, Ditlevsen S. (2017). Estimation of Synaptic Conductances in Presence of Nonlinear Effects Caused by Subthreshold Ionic Currents. Frontiers in computational neuroscience. 11 [PubMed]
Voigt T, Herzog A, Michaelis B, Kube K, De_lima AD. (2007). Displaced strategies optimize connectivity in neocortical networks Neurocomputing. 70
Yvon C, Czarnecki A, Streit J. (2007). Riluzole-induced oscillations in spinal networks. Journal of neurophysiology. 97 [PubMed]
Zerlaut Y, Chemla S, Chavane F, Destexhe A. (2018). Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. Journal of computational neuroscience. 44 [PubMed]