This model is an extension of a model ( http://modeldb.yale.edu/138379 ) recently published in Frontiers in Computational Neuroscience. This model consists of 4700 event-driven, rule-based neurons, wired according to anatomical data, and driven by both white-noise synaptic inputs and a sensory signal recorded from a rat thalamus. Its purpose is to explore the effects of cortical damage, along with the repair of this damage via a neuroprosthesis.
Model Type: Realistic Network
Region(s) or Organism(s): Neocortex
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell
Currents: I Chloride; I Sodium; I Potassium
Receptors: GabaA; AMPA; NMDA; Gaba
Model Concept(s): Activity Patterns; Deep brain stimulation; Information transfer; Brain Rhythms
Simulation Environment: NEURON
Implementer(s): Lytton, William [bill.lytton at downstate.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; Kerr, Cliff [cliffk at neurosim.downstate.edu]
References:
Kerr CC et al. (2012). Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society. 20 [PubMed]