"... Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus."
Model Type: Realistic Network; Axon
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell
Receptors: GabaA; GabaB; AMPA; NMDA; Glutamate; Gaba
Model Concept(s): Action Potential Initiation; Temporal Pattern Generation; Axonal Action Potentials; Therapeutics; Deep brain stimulation
Simulation Environment: NEURON; MATLAB
References:
Birdno MJ et al. (2012). Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. Journal of neurophysiology. 107 [PubMed]
Yi G, Grill WM. (2018). Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs. Journal of neural engineering. 15 [PubMed]