Here we use phase-response curves (PRC) from Morris-Lecar (M-L) model neurons with synaptic depression and gradually decrease input current to cells within a network simulation. This method effectively decreases firing rates resulting in a shift to greater network synchrony illustrating a possible mechanism of the transition phenomenon. PRCs are measured from the M-L conductance based model cell with a range of input currents within the limit cycle. A large network of 3000 excitatory neurons is simulated with a network topology generated from second-order statistics which allows a range of population synchrony. The population synchrony of the oscillating cells is measured with the Kuramoto order parameter, which reveals a transition from tonic to clonic phase exhibited by our model network.
Model Type: Realistic Network
Cell Type(s): Hodgkin-Huxley neuron; Abstract Morris-Lecar neuron
Model Concept(s): Epilepsy
Simulation Environment: MATLAB
Implementer(s): Beverlin, Bryce
References:
Beverlin B, Kakalios J, Nykamp D, Netoff TI. (2012). Dynamical changes in neurons during seizures determine tonic to clonic shift. Journal of computational neuroscience. 33 [PubMed]