Modeling the effects of dopamine on network synchronization (Komek et al. 2012)


Dopamine modulates cortical circuit activity in part through its actions on GABAergic interneurons, including increasing the excitability of fast-spiking interneurons. Though such effects have been demonstrated in single cells, there are no studies that examine how such mechanisms may lead to the effects of dopamine at a neural network level. In this study, we investigated the effects of dopamine on synchronization in two simulated neural networks; one biophysical model composed of Wang-Buzsaki neurons and a reduced model with theta neurons. In both models, we show that parametrically varying the levels of dopamine, modeled through the changes in the excitability of interneurons, reveals an inverted-U shaped relationship, with low gamma band power at both low and high dopamine levels and optimal synchronization at intermediate levels. Moreover, such a relationship holds when the external input is both tonic and periodic at gamma band range. Together, our results indicate that dopamine can modulate cortical gamma band synchrony in an inverted-U fashion and that the physiologic effects of dopamine on single fast-spiking interneurons can give rise to such non-monotonic effects at the network level.

Model Type: Realistic Network

Cell Type(s): Abstract Wang-Buzsaki neuron; Abstract theta neuron

Transmitters: Dopamine

Model Concept(s): Synchronization

Simulation Environment: XPPAUT

Implementer(s): Ermentrout, Bard [bard_at_pitt.edu]; Komek, Kubra [kkomek at andrew.cmu.edu]

References:

K├Âmek K, Bard Ermentrout G, Walker CP, Cho RY. (2012). Dopamine and gamma band synchrony in schizophrenia--insights from computational and empirical studies. The European journal of neuroscience. 36 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.