Distributed cerebellar plasticity implements adaptable gain control (Garrido et al., 2013)


We tested the role of plasticity distributed over multiple synaptic sites (Hansel et al., 2001; Gao et al., 2012) by generating an analog cerebellar model embedded into a control loop connected to a robotic simulator. The robot used a three-joint arm and performed repetitive fast manipulations with different masses along an 8-shape trajectory. In accordance with biological evidence, the cerebellum model was endowed with both LTD and LTP at the PF-PC, MF-DCN and PC-DCN synapses. This resulted in a network scheme whose effectiveness was extended considerably compared to one including just PF-PC synaptic plasticity. Indeed, the system including distributed plasticity reliably self-adapted to manipulate different masses and to learn the arm-object dynamics over a time course that included fast learning and consolidation, along the lines of what has been observed in behavioral tests. In particular, PF-PC plasticity operated as a time correlator between the actual input state and the system error, while MF-DCN and PC-DCN plasticity played a key role in generating the gain controller. This model suggests that distributed synaptic plasticity allows generation of the complex learning properties of the cerebellum.

Model Type: Realistic Network

Region(s) or Organism(s): Cerebellum

Cell Type(s): Cerebellum deep nucleus neuron

Model Concept(s): Long-term Synaptic Plasticity

Simulation Environment: C or C++ program; MATLAB; Simulink

Implementer(s): Garrido, Jesus A [jesus.garrido at unipv.it]; Luque, Niceto R. [nluque at ugr.es]

References:

Garrido JA, Luque NR, D'Angelo E, Ros E. (2013). Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Frontiers in neural circuits. 7 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.