Fast global oscillations in networks of I&F neurons with low firing rates (Brunel and Hakim 1999)


Brunel N, Hakim V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural computation. 11 [PubMed]

See more from authors: Brunel N · Hakim V

References and models cited by this paper

Abbott LF, van Vreeswijk C. (1993). Asynchronous states in networks of pulse-coupled oscillators. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 48 [PubMed]

Abeles M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex..

Abramowitz M, Stegun IA. (1970). Handbook Of Mathematical Functions.

Amit DJ, Brunel N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral cortex (New York, N.Y. : 1991). 7 [PubMed]

Bragin A et al. (1995). Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

Braitenberg V, Schuz A. (1991). Anatomy of the Cortex: Statistics and Geometry.

Brunel N, Amit D. (1997). Dynamics of a recurrent network of spiking neurons before and following learning Network. 8

Buzsáki G, Chrobak JJ. (1995). Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Current opinion in neurobiology. 5 [PubMed]

Buzsáki G, Horváth Z, Urioste R, Hetke J, Wise K. (1992). High-frequency network oscillation in the hippocampus. Science (New York, N.Y.). 256 [PubMed]

Chandrasekhar S. (1943). Stochastic problems in physics and astronomy Rev Mod Phys. 15

Csicsvari J, Hirase H, Czurko A, Buzsáki G. (1998). Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron. 21 [PubMed]

Delaney KR et al. (1994). Waves and stimulus-modulated dynamics in an oscillating olfactory network. Proceedings of the National Academy of Sciences of the United States of America. 91 [PubMed]

Eckhorn R, Frien A, Bauer R, Woelbern T, Kehr H. (1993). High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey. Neuroreport. 4 [PubMed]

Fisahn A, Pike FG, Buhl EH, Paulsen O. (1998). Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature. 394 [PubMed]

Gardiner CW. (1983). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences.

Gerstner W. (1995). Time structure of the activity in neural network models. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 51 [PubMed]

Gerstner W, van Hemmen JL, Cowan JD. (1996). What matters in neuronal locking? Neural computation. 8 [PubMed]

Gray CM. (1994). Synchronous oscillations in neuronal systems: mechanisms and functions. Journal of computational neuroscience. 1 [PubMed]

Gray CM, König P, Engel AK, Singer W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 338 [PubMed]

Gray CM, McCormick DA. (1996). Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science (New York, N.Y.). 274 [PubMed]

Hansel D, Mato G, Meunier C. (1995). Synchrony in excitatory neural networks. Neural computation. 7 [PubMed]

Hirsch MW, Smale S. (1974). Differential Equations, Dynamical Systems and Linear Algebra.

Kopell N, LeMasson G. (1994). Rhythmogenesis, amplitude modulation, and multiplexing in a cortical architecture. Proceedings of the National Academy of Sciences of the United States of America. 91 [PubMed]

Kreiter AK, Singer W. (1996). Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

Kuramoto Y, Shinomoto S, Sakaguchi H. (1988). Phase transitions and their bifurcation analysis in a large population of active rotators with mean-field coupling Prog Theor Phys. 79

Laurent G, Davidowitz H. (1994). Encoding of olfactory information with oscillating neural assemblies. Science (New York, N.Y.). 265 [PubMed]

MacLeod K, Laurent G. (1996). Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science (New York, N.Y.). 274 [PubMed]

Orszag SA, Bender CM. (1987). Advanced Mathematical Methods for Scientists and Engineers.

Prechtl JC, Cohen LB, Pesaran B, Mitra PP, Kleinfeld D. (1997). Visual stimuli induce waves of electrical activity in turtle cortex. Proceedings of the National Academy of Sciences of the United States of America. 94 [PubMed]

Rappel WJ, Karma A. (1996). Noise-Induced Coherence in Neural Networks. Physical review letters. 77 [PubMed]

Rinzel J, Golomb D. (1994). Clustering in globally coupled inhibitory neurons Physica D. 72

Ritz R, Sejnowski TJ. (1997). Synchronous oscillatory activity in sensory systems: new vistas on mechanisms. Current opinion in neurobiology. 7 [PubMed]

Sejnowski TJ, Tsodyks MV. (1995). Rapid state switching in balanced cortical network models Network. 6

Singer W, Gray CM. (1995). Visual feature integration and the temporal correlation hypothesis. Annual review of neuroscience. 18 [PubMed]

Stopfer M, Bhagavan S, Smith BH, Laurent G. (1997). Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature. 390 [PubMed]

Strogatz SH, Mirollo RE. (1990). Synchronization of pulse-coupled biological oscillators. Siam J Appl Math. 6

Strogatz SH, Mirollo RE. (1991). Stability of incoherence in a population of coupled oscillators J Stat Phys. 63

Traub RD, Miles R, Wong RK. (1989). Model of the origin of rhythmic population oscillations in the hippocampal slice. Science (New York, N.Y.). 243 [PubMed]

Traub RD, Whittington MA, Colling SB, Buzsáki G, Jefferys JG. (1996). Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. The Journal of physiology. 493 ( Pt 2) [PubMed]

Treves A. (1993). Mean field analysis of neuronal spike dynamics. Network. 4

Van Vreeswijk C, Abbott LF, Ermentrout GB. (1994). When inhibition not excitation synchronizes neural firing. Journal of computational neuroscience. 1 [PubMed]

Vreeswijk Cv. (1996). Partial synchronization in populations of pulse-coupled oscillators. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 54 [PubMed]

Wang XJ, Buzsáki G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

Wang XJ, Golomb D, Rinzel J. (1995). Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proceedings of the National Academy of Sciences of the United States of America. 92 [PubMed]

Whittington MA, Traub RD, Jefferys JG. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. 373 [PubMed]

Ylinen A et al. (1995). Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

van Vreeswijk C, Sompolinsky H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science (New York, N.Y.). 274 [PubMed]

References and models that cite this paper

Alvarez FP, Destexhe A. (2004). Simulating cortical network activity states constrained by intracellular recordings. Neurocomputing. 58

Angulo-Garcia D, Berke JD, Torcini A. (2016). Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks: A Simple Model for the Collective Activity of Striatal Projection Neurons. PLoS computational biology. 12 [PubMed]

Badel L et al. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of neurophysiology. 99 [PubMed]

Banerjee A. (2006). On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons. Journal of computational neuroscience. 20 [PubMed]

Bathellier B, Lagier S, Faure P, Lledo PM. (2006). Circuit properties generating gamma oscillations in a network model of the olfactory bulb. Journal of neurophysiology. 95 [PubMed]

Brunel N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of computational neuroscience. 8 [PubMed]

Brunel N, Hansel D. (2006). How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural computation. 18 [PubMed]

Brunel N, Wang XJ. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of computational neuroscience. 11 [PubMed]

Börgers C, Kopell N. (2005). Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural computation. 17 [PubMed]

Cortes JM, Torres JJ, Marro J, Garrido PL, Kappen HJ. (2006). Effects of fast presynaptic noise in attractor neural networks. Neural computation. 18 [PubMed]

Câteau H, Reyes AD. (2006). Relation between single neuron and population spiking statistics and effects on network activity. Physical review letters. 96 [PubMed]

Destexhe A, Rudolph M, Paré D. (2003). The high-conductance state of neocortical neurons in vivo. Nature reviews. Neuroscience. 4 [PubMed]

Geisler C, Brunel N, Wang XJ. (2005). Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. Journal of neurophysiology. 94 [PubMed]

Hamaguchi K, Okada M, Aihara K. (2007). Variable timescales of repeated spike patterns in synfire chain with Mexican-hat connectivity. Neural computation. 19 [PubMed]

Hansel D, Mato G. (2003). Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural computation. 15 [PubMed]

Harris KD et al. (2017). Different roles for inhibition in the rhythm-generating respiratory network. Journal of neurophysiology. 118 [PubMed]

Herrmann A, Gerstner W. (2001). Noise and the PSTH response to current transients: I. General theory and application to the integrate-and-fire neuron. Journal of computational neuroscience. 11 [PubMed]

Jercog D et al. (2017). UP-DOWN cortical dynamics reflect state transitions in a bistable network. eLife. 6 [PubMed]

Kaltenbrunner A, Gómez V, López V. (2007). Phase transition and hysteresis in an ensemble of stochastic spiking neurons. Neural computation. 19 [PubMed]

La Camera G, Rauch A, Lüscher HR, Senn W, Fusi S. (2004). Minimal models of adapted neuronal response to in vivo-like input currents. Neural computation. 16 [PubMed]

Laing CR. (2006). On the application of "equation-free modelling" to neural systems. Journal of computational neuroscience. 20 [PubMed]

Ly C, Tranchina D. (2007). Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural computation. 19 [PubMed]

Magalhães B, Hines M, Sterling T, Schüermann F. (2019). Exploiting Flow Graph of System of ODEs to Accelerate the Simulation of Biologically-Detailed Neural Networks 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

Marpeau F, Barua A, Josić K. (2009). A finite volume method for stochastic integrate-and-fire models. Journal of computational neuroscience. 26 [PubMed]

Masuda N, Doiron B, Longtin A, Aihara K. (2005). Coding of temporally varying signals in networks of spiking neurons with global delayed feedback. Neural computation. 17 [PubMed]

Meffin H, Burkitt AN, Grayden DB. (2004). An analytical model for the "large, fluctuating synaptic conductance state" typical of neocortical neurons in vivo. Journal of computational neuroscience. 16 [PubMed]

Miller P, Wang XJ. (2006). Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos (Woodbury, N.Y.). 16 [PubMed]

Mongillo G, Amit DJ. (2001). Oscillations and irregular emission in networks of linear spiking neurons. Journal of computational neuroscience. 11 [PubMed]

Morrison A, Aertsen A, Diesmann M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural computation. 19 [PubMed]

Muresan RC, Savin C. (2007). Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. Journal of neurophysiology. 97 [PubMed]

Mäki-Marttunen T, Aćimović J, Ruohonen K, Linne ML. (2013). Structure-dynamics relationships in bursting neuronal networks revealed using a prediction framework. PloS one. 8 [PubMed]

Naundorf B, Geisel T, Wolf F. (2005). Action potential onset dynamics and the response speed of neuronal populations. Journal of computational neuroscience. 18 [PubMed]

Nykamp DQ, Tranchina D. (2000). A population density approach that facilitates large-scale modeling of neural networks: analysis and an application to orientation tuning. Journal of computational neuroscience. 8 [PubMed]

Paninski L. (2006). The spike-triggered average of the integrate-and-fire cell driven by gaussian white noise. Neural computation. 18 [PubMed]

Pfeuty B, Mato G, Golomb D, Hansel D. (2005). The combined effects of inhibitory and electrical synapses in synchrony. Neural computation. 17 [PubMed]

Renart A, Moreno-Bote R, Wang XJ, Parga N. (2007). Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural computation. 19 [PubMed]

Romani S, Amit DJ, Mongillo G. (2006). Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. Journal of computational neuroscience. 20 [PubMed]

Ros E, Carrillo R, Ortigosa EM, Barbour B, Agís R. (2006). Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural computation. 18 [PubMed]

Salinas E, Sejnowski TJ. (2001). Correlated neuronal activity and the flow of neural information. Nature reviews. Neuroscience. 2 [PubMed]

Soula H, Beslon G, Mazet O. (2005). Spontaneous Dynamics of Asymmetric Random Recurrent Spiking Neural Networks Neural Comput. 18

Susi G et al. (2021). FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency Scientific reports. 11 [PubMed]

Susin E, Destexhe A. (2021). Integration, coincidence detection and resonance in networks of spiking neurons expressing gamma oscillations and asynchronous states PLoS computational biology. 17 [PubMed]

Tchumatchenko T, Clopath C. (2014). Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance. Nature communications. 5 [PubMed]

Tiesinga PH, Fellous JM, José JV, Sejnowski TJ. (2001). Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus. Hippocampus. 11 [PubMed]

Tiesinga PH, Sejnowski TJ. (2004). Rapid temporal modulation of synchrony by competition in cortical interneuron networks. Neural computation. 16 [PubMed]

Tikidji-Hamburyan RA, Leonik CA, Canavier CC. (2019). Phase response theory explains cluster formation in sparsely but strongly connected inhibitory neural networks and effects of jitter due to sparse connectivity. Journal of neurophysiology. 121 [PubMed]

Wenning G, Obermayer K. (2003). Activity driven adaptive stochastic resonance. Physical review letters. 90 [PubMed]

Wu Z, Guo A, Fu X. (2017). Generation of low-gamma oscillations in a GABAergic network model of the striatum. Neural networks : the official journal of the International Neural Network Society. 95 [PubMed]

Zang Y, Hong S, De Schutter E. (2020). Firing rate-dependent phase responses of Purkinje cells support transient oscillations. eLife. 9 [PubMed]

Zerlaut Y, Chemla S, Chavane F, Destexhe A. (2018). Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. Journal of computational neuroscience. 44 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.