Default mode network (DMN) shows intrinsic, high-level activity at rest. We tested a hypothesis proposed for its role in sensory information processing: Intrinsic DMN activity facilitates neural responses to sensory input. A neural network model, consisting of a sensory network (Nsen) and a DMN, was simulated. The Nsen contained cell assemblies. Each cell assembly comprised principal cells, GABAergic interneurons (Ia, Ib), and glial cells. We let the Nsen carry out a perceptual task: detection of sensory stimuli. … This enabled the Nsen to reliably detect the stimulus. We suggest that intrinsic default model network activity may accelerate the reaction speed of the sensory network by modulating its ongoing-spontaneous activity in a subthreshold manner. Ambient GABA contributes to achieve an optimal ongoing spontaneous subthreshold neuronal state, in which GABAergic gliotransmission triggered by the intrinsic default model network activity may play an important role.
Model Type: Realistic Network
Model Concept(s): Sensory processing
Simulation Environment: C or C++ program
References:
Matsui H, Zheng M, Hoshino O. (2014). Facilitation of neuronal responses by intrinsic default mode network activity. Neural computation. 26 [PubMed]