" ... Based on experimental observations, we developed a computational model that can be embedded in more comprehensive models of respiratory and cardiovascular autonomic control. Our simulation results successfully reproduce the variability we observed experimentally. The in silico model suggests that age-dependent variability may be due to a developmental increase in mean synaptic conductance between preBötC neurons. We also used simulations to explore the effects of stochastic spiking in sensory relay neurons. Our results suggest that stochastic spiking may actually stabilize modulation of both respiratory rate and its variability when the rate changes due to physiological demand. "
Model Type: Realistic Network
Cell Type(s): Respiratory column neuron
Model Concept(s): Noise Sensitivity; Development; Respiratory control
Simulation Environment: NEURON
References:
Wilson CG, Fietkiewicz C, Shafer GO, Platt EA. (2016). Variability in respiratory rhythm generation: In vitro and in silico models Communications in Nonlinear Science and Numerical Simulation. 32