Microsaccades and synchrony coding in the retina (Masquelier et al. 2016)


Masquelier T, Portelli G, Kornprobst P. (2016). Microsaccades enable efficient synchrony-based coding in the retina: a simulation study. Scientific reports. 6 [PubMed]

See more from authors: Masquelier T · Portelli G · Kornprobst P

References and models cited by this paper

Aytekin M, Victor JD, Rucci M. (2014). The visual input to the retina during natural head-free fixation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Basalyga G, Montemurro MA, Wennekers T. (2013). Information coding in a laminar computational model of cat primary visual cortex. Journal of computational neuroscience. 34 [PubMed]

Berdondini L et al. (2009). Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab on a chip. 9 [PubMed]

Berry MJ, Warland DK, Meister M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Sciences of the United States of America. 94 [PubMed]

Brette R. (2012). Computing with neural synchrony. PLoS computational biology. 8 [PubMed]

Bruno RM. (2011). Synchrony in sensation. Current opinion in neurobiology. 21 [PubMed]

Cherici C, Kuang X, Poletti M, Rucci M. (2012). Precision of sustained fixation in trained and untrained observers. Journal of vision. 12 [PubMed]

Collewijn H, Kowler E. (2008). The significance of microsaccades for vision and oculomotor control. Journal of vision. 8 [PubMed]

Dacey DM. (1993). The mosaic of midget ganglion cells in the human retina. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Donner K, Hemilä S. (2007). Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision research. 47 [PubMed]

Engbert R, Kliegl R. (2003). Microsaccades uncover the orientation of covert attention. Vision research. 43 [PubMed]

Engbert R, Mergenthaler K, Sinn P, Pikovsky A. (2011). An integrated model of fixational eye movements and microsaccades. Proceedings of the National Academy of Sciences of the United States of America. 108 [PubMed]

Fei-fei L, Savarese S. (2007). 3D generic object categorization, localization and pose estimation Proc. IEEE Int. Conf. Comput. Vis..

Fontaine B, Peña JL, Brette R. (2014). Spike-threshold adaptation predicted by membrane potential dynamics in vivo. PLoS computational biology. 10 [PubMed]

Gerstner W, Ritz R, van Hemmen JL. (1993). Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biological cybernetics. 69 [PubMed]

Gollisch T, Meister M. (2010). Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron. 65 [PubMed]

Greene E. (2006). Simultaneity in the millisecond range as a requirement for effective shape recognition. Behavioral and brain functions : BBF. 2 [PubMed]

Greschner M, Bongard M, Rujan P, Ammermüller J. (2002). Retinal ganglion cell synchronization by fixational eye movements improves feature estimation. Nature neuroscience. 5 [PubMed]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM. (2004). ModelDB: A Database to Support Computational Neuroscience. Journal of computational neuroscience. 17 [PubMed]

Kasabov N, Mohemmed A, Lu G. (2012). Evaluating SPAN Incremental Learning for Handwritten Digit Recognition Neural Inf. Process.

Kempter R, Gerstner W, van Hemmen JL. (2001). Intrinsic stabilization of output rates by spike-based Hebbian learning. Neural computation. 13 [PubMed]

Kenyon GT, Marshak DW. (1998). Gap junctions with amacrine cells provide a feedback pathway for ganglion cells within the retina. Proceedings. Biological sciences. 265 [PubMed]

Ko HK, Poletti M, Rucci M. (2010). Microsaccades precisely relocate gaze in a high visual acuity task. Nature neuroscience. 13 [PubMed]

Kornprobst P, Masmoudi K, Antonini M. (2010). Another look at the retina as an image scalar quantizer Proc. 2010 IEEE Int. Symp. Circuits Syst..

Kowler E. (2011). Eye movements: the past 25 years. Vision research. 51 [PubMed]

Kuang X, Poletti M, Victor JD, Rucci M. (2012). Temporal encoding of spatial information during active visual fixation. Current biology : CB. 22 [PubMed]

Kumar A, Rotter S, Aertsen A. (2010). Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nature reviews. Neuroscience. 11 [PubMed]

Maccione A et al. (2014). Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse. The Journal of physiology. 592 [PubMed]

Martinez-Conde S, Macknik SL. (2008). Fixational eye movements across vertebrates: comparative dynamics, physiology, and perception. Journal of vision. 8 [PubMed]

Martinez-Conde S, Macknik SL, Hubel DH. (2000). Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nature neuroscience. 3 [PubMed]

Martinez-Conde S, Macknik SL, Hubel DH. (2004). The role of fixational eye movements in visual perception. Nature reviews. Neuroscience. 5 [PubMed]

Martinez-Conde S, Otero-Millan J, Macknik SL. (2013). The impact of microsaccades on vision: towards a unified theory of saccadic function. Nature reviews. Neuroscience. 14 [PubMed]

Masquelier T. (2012). Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model. Journal of computational neuroscience. 32 [PubMed]

Masquelier T. (2013). Neural variability, or lack thereof. Frontiers in computational neuroscience. 7 [PubMed]

Masquelier T. (2014). Oscillations can reconcile slowly changing stimuli with short neuronal integration and STDP timescales. Network (Bristol, England). 25 [PubMed]

Masquelier T, Guyonneau R, Thorpe SJ. (2009). Competitive STDP-based spike pattern learning. Neural computation. 21 [PubMed]

Masquelier T, Thorpe SJ. (2007). Unsupervised learning of visual features through spike timing dependent plasticity. PLoS computational biology. 3 [PubMed]

McCamy MB, Otero-Millan J, Di Stasi LL, Macknik SL, Martinez-Conde S. (2014). Highly informative natural scene regions increase microsaccade production during visual scanning. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

McCamy MB et al. (2012). Microsaccadic efficacy and contribution to foveal and peripheral vision. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

McGinnity TM, Vance P, Coleman SA, Kerr D, Das GP. (2015). Modelling of a retinal ganglion cell with simple spiking models 2015 Int. Jt. Conf. Neural Networks.

Merigan WH, Maunsell JH. (1993). How parallel are the primate visual pathways? Annual review of neuroscience. 16 [PubMed]

Moldakarimov S, Bazhenov M, Sejnowski TJ. (2015). Feedback stabilizes propagation of synchronous spiking in cortical neural networks. Proceedings of the National Academy of Sciences of the United States of America. 112 [PubMed]

Neuenschwander S, Singer W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature. 379 [PubMed]

Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Poggio T, Marr D. (1976). From understanding computation to understanding neural circuitry AI Memo. 357

Poletti M, Listorti C, Rucci M. (2013). Microscopic eye movements compensate for nonhomogeneous vision within the fovea. Current biology : CB. 23 [PubMed]

Ratté S, Hong S, De Schutter E, Prescott SA. (2013). Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer. Neuron. 78 [PubMed]

Riesenhuber M, Poggio T. (1999). Hierarchical models of object recognition in cortex. Nature neuroscience. 2 [PubMed]

Rolfs M. (2009). Microsaccades: small steps on a long way. Vision research. 49 [PubMed]

Roska B, Werblin F. (2003). Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nature neuroscience. 6 [PubMed]

Schiller PH, Logothetis NK. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in neurosciences. 13 [PubMed]

Stanford LR. (1987). Conduction velocity variations minimize conduction time differences among retinal ganglion cell axons. Science (New York, N.Y.). 238 [PubMed]

Stanley GB et al. (2012). Visual orientation and directional selectivity through thalamic synchrony. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

Tankus A, Fried I. (2012). Visuomotor coordination and motor representation by human temporal lobe neurons. Journal of cognitive neuroscience. 24 [PubMed]

Theunissen F, Miller JP. (1995). Temporal encoding in nervous systems: a rigorous definition. Journal of computational neuroscience. 2 [PubMed]

Thorpe S, Delorme A, Van Rullen R. (2001). Spike-based strategies for rapid processing. Neural networks : the official journal of the International Neural Network Society. 14 [PubMed]

Thorpe SJ, Vanrullen R, Guyonneau R, Guilbaud N;Allegraud JM. (2004). SpikeNet: real-time visual processing with one spike per neuron Neurocomputing. 58-60

Van Rullen R, Thorpe SJ. (2001). Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural computation. 13 [PubMed]

Wang HP, Spencer D, Fellous JM, Sejnowski TJ. (2010). Synchrony of thalamocortical inputs maximizes cortical reliability. Science (New York, N.Y.). 328 [PubMed]

Wohrer A, Kornprobst P. (2009). Virtual Retina: a biological retina model and simulator, with contrast gain control. Journal of computational neuroscience. 26 [PubMed]

Yang Y, Zador AM. (2012). Differences in sensitivity to neural timing among cortical areas. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.