Feedforward inhibition in pyramidal cells (Ferrante & Ascoli 2015)


"Feedforward inhibition (FFI) enables pyramidal cells in area CA1 of the hippocampus (CA1PCs) to remain easily excitable while faithfully representing a broad range of excitatory inputs without quickly saturating. Despite the cortical ubiquity of FFI, its specific function is not completely understood. FFI in CA1PCs is mediated by two physiologically and morphologically distinct GABAergic interneurons: fast-spiking, perisomatic-targeting basket cells and regular-spiking, dendritic-targeting bistratified cells. These two FFI pathways might create layer-specific computational sub-domains within the same CA1PC, but teasing apart their specific contributions remains experimentally challenging. We implemented a biophysically realistic model of CA1PCs using 40 digitally reconstructed morphologies and constraining synaptic numbers, locations, amplitude, and kinetics with available experimental data. ..."

Model Type: Neuron or other electrically excitable cell

Region(s) or Organism(s): Hippocampus

Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 bistratified cell; Hippocampus CA1 basket cell

Currents: I K; I A; I h; I Na,t

Model Concept(s): Synaptic Integration

Simulation Environment: NEURON

Implementer(s): Ferrante, Michele [mferr133 at bu.edu]

References:

Ferrante M, Ascoli GA. (2015). Distinct and synergistic feedforward inhibition of pyramidal cells by basket and bistratified interneurons. Frontiers in cellular neuroscience. 9 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.