Generating neuron geometries for detailed 3D simulations using AnaMorph (Morschel et al 2017)


Mörschel K, Breit M, Queisser G. (2017). Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph. Neuroinformatics. 15 [PubMed]

See more from authors: Mörschel K · Breit M · Queisser G

References and models cited by this paper

Ascoli GA. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature reviews. Neuroscience. 7 [PubMed]

Barnhill R, Jordan M, Farin G, Piper B. (1987). Surface/surface intersection Computer Aided Geometric Design. 4(1)

Barton M, Jüttler B. (2007). Computing roots of polynomials by quadratic clipping Computer Aided Geometric Design. 24(3)

Barton M, Jüttler B. (2007). Computing roots of systems of polynomials by linear clipping Technical Report 2007-18 SFB F013.

Biermann H, Kristjansson D, Zorin D. (2001). Approximate boolean operations on free-form solids Proceedings of the 28th annual conference on computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’01.

Borg-Graham LJ. (1999). chap Interpretations of data and mechanisms for hippocampal pyramidal cell models Models of cortical circuits.

Breit M et al. (2016). Anatomically Detailed and Large-Scale Simulations Studying Synapse Loss and Synchrony Using NeuroBox. Frontiers in neuroanatomy. 10 [PubMed]

Brito JP et al. (2013). Neuronize: a tool for building realistic neuronal cell morphologies. Frontiers in neuroanatomy. 7 [PubMed]

CGAL THE. (2016). The CGAL Project CGAL User and reference manual. http://doc.cgal.org/4.9/Manual/packages.html.

Cignoni P, Corsini M, Ranzuglia G. (2008). Meshlab: an Open-Source 3D mesh processing system Ercim News. 73(45-46)

Coombs J, van der List D, Wang GY, Chalupa LM. (2006). Morphological properties of mouse retinal ganglion cells. Neuroscience. 140 [PubMed]

Elsheikh AH, Elsheikh M. (2014). A reliable triangular mesh intersection algorithm and its application in geological modelling Engineering with Computers. 30(1)

Farouki RT, Rajan VT. (1988). Algorithms for polynomials in Bernstein form Computer Aided Geometric Design. 5(1)

Farouki RT. (2012). The Bernstein polynomial basis: a centennial retrospective Computer Aided Geometric Design. 29(6)

Farouki RT, Goodman TNT. (1996). On the optimal stability of the Bernstein basis Mathematics of Computation. 65

Floater MS, Surazhsky T. (2006). Parameterization for curve interpolation Studies in Computational Mathematics. 12

Garland M, Heckbert PS. (1997). Surface simplification using quadric error metrics Proceedings of the 24th annual conference on computer graphics and interactive techniques.

Grein S, Stepniewski M, Reiter S, Knodel MM, Queisser G. (2014). 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time. Frontiers in neuroinformatics. 8 [PubMed]

Greiner H. (1991). A survey on univariate data interpolation and approximation by splines of given shape Mathematical and Computer Modelling. 15(10)

Groh A et al. (2010). Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cerebral cortex (New York, N.Y. : 1991). 20 [PubMed]

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]

Ishizuka N, Cowan WM, Amaral DG. (1995). A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. The Journal of comparative neurology. 362 [PubMed]

Jüttler B. (1998). The dual basis functions for the Bernstein polynomials Advances in Computational Mathematics http://tubiblio.ulb.tu-darmstadt.de/9526/. 8(1998)

Lasserre S et al. (2012). A neuron membrane mesh representation for visualization of electrophysiological simulations. IEEE transactions on visualization and computer graphics. 18 [PubMed]

Levien R, Séquin CH. (2009). Interpolating splines: which is the fairest of them all? Computer-Aided Design and Applications. 6(1)

Lo SH. (1995). Automatic mesh generation over intersecting surfaces International Journal for Numerical Methods in Engineering. 38(6)

Lorensen HE. (1987). Marching cubes: a high resolution 3D surface construction algorithm ACM Siggraph Computer Graphics. 21

Maekawa T, Patrikalakis NM. (2002). Shape interrogation for computer aided design and manufacturing.

McDonald CG et al. (2007). Evidence for elevated nicotine-induced structural plasticity in nucleus accumbens of adolescent rats. Brain research. 1151 [PubMed]

McDougal RA, Hines ML, Lytton WW. (2013). Water-tight membranes from neuronal morphology files. Journal of neuroscience methods. 220 [PubMed]

Moerschel K. (2013). AnaMorph: a framework for geometric modelling consistency analysis and surface mesh generation of anatomically reconstructed neuron morphologies Diploma thesis, Goethe-Universität Frankfurt am Main.

Moore B, Jüttler B. (2011). A quadratic clipping step with superquadratic convergence for bivariate polynomial systems Mathematics in Computer Science. 5(2)

Nielson GM. (2004). Dual marching cubes Proceedings of the conference on visualization ’04, IEEE Computer Society, Washington, DC, USA, VIS ’04.

Queisser G, Wiegert S, Bading H. (2011). Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription. Nucleus (Austin, Tex.). 2 [PubMed]

Reiter S. (2012). ProMesh – meshing of unstructured grids in 1, 2, and 3 dimensions. http://promesh3d.com.

Reiter S. (2014). Effiziente Algorithmen und Datenstrukturen für die Realisierung von adaptiven hierarchischen Gittern auf massiv parallelen Systemen. PhD thesis, Universität Frankfurt am Main.

Rossignac JR. (1985). Blending and offsetting solid models (cad/cam, computational geometry, representations, curves, surfaces, approximation). Phd Thesis, The University of Rochester, aAI8528560.

Schroeder W, Martin KM, Lorensen WE. (2006). The visualization toolkit (4th ed.). Kitware.

Schulz C. (2009). Bézier clipping is quadratically convergent Computer Aided Geometric Design. 26(1)

Sederberg T, Nishita T. (1990). Curve intersection using Bézier clipping Computer-Aided Design. 22(9)

Shemer I, Brinne B, Tegnér J, Grillner S. (2008). Electrotonic signals along intracellular membranes may interconnect dendritic spines and nucleus. PLoS computational biology. 4 [PubMed]

Si H. (2015). TetGen, a Delaunay-based quality tetrahedral mesh generator ACM Transactions on Mathematical Software. 41(2)

Vollmer J, Mencl R, Müller H. (1999). Improved laplacian smoothing of noisy surface meshes Computer graphics forum.

Vuksic M et al. (2008). 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the Thy1-GFP mouse. Hippocampus. 18 [PubMed]

Wittmann M et al. (2009). Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Wittum G, Reiter S, Rupp M, Vogel A, Nägel A. (2013). UG 4: a novel flexible software system for simulating PDE based models on high performance computers Computing and Visualization in Science. 16(4)

Yu G, Maekawa T, Patrikalakis NM, Sakkalis T. (1998). Analysis and applications of pipe surfaces Computer Aided Geometric Design. 15(5)

Zhang L, Wang G, Liu L, Lin B. (2009). Fast approach for computing roots of polynomials using cubic clipping Computer Aided Geometric Design. 26(5)

do_Carmo M. (1976). Differential geometry of curves and surfaces.

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.