Adjusted regularization of cortical covariance (Vinci et al 2018)


Vinci G, Ventura V, Smith MA, Kass RE. (2018). Adjusted regularization of cortical covariance. Journal of computational neuroscience. 45 [PubMed]

See more from authors: Vinci G · Ventura V · Smith MA · Kass RE

References and models cited by this paper

Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ. (2013). Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nature methods. 10 [PubMed]

Alivisatos AP et al. (2013). Nanotools for neuroscience and brain activity mapping. ACS nano. 7 [PubMed]

Andrews D, Mallows C. (1974). Scale mixtures of normal distributions J Royal Stat Soc. 36

Banerjee O, d’Aspremont A, El Ghaoui L. (2008). First-order methods for sparse covariance selection. SIAM Journal On Matrix Analysis And Applications. 30(1)

Barnett A, Dobson AJ. (2008). An Introduction To Generalized Linear Models.

Bassett DS, Sporns O. (2017). Network neuroscience. Nature neuroscience. 20 [PubMed]

Behseta S, Berdyyeva T, Olson CR, Kass RE. (2009). Bayesian correction for attenuation of correlation in multi-trial spike count data. Journal of neurophysiology. 101 [PubMed]

Bickel PJ, Zhu J, Rothman AJ, Levina E. (2008). Sparse permutation invariant covariance estimation. Electronic Journal Of Statistics. 2

Brown EN, Eden UT, Kass RE. (2014). Analysis Of Neural Data.

Brown EN, Kass RE, Mitra PP. (2004). Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature neuroscience. 7 [PubMed]

Butts DA, Goldman MS. (2006). Tuning curves, neuronal variability, and sensory coding. PLoS biology. 4 [PubMed]

Cohen MR, Kohn A. (2011). Measuring and interpreting neuronal correlations. Nature neuroscience. 14 [PubMed]

Cohen MR, Maunsell JH. (2009). Attention improves performance primarily by reducing interneuronal correlations. Nature neuroscience. 12 [PubMed]

Cover TM, Thomas JA. (2006). Elements Of Information Theory, 2nd Edition.

Cowley BR, Smith MA, Kohn A, Yu BM. (2016). Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex. PLoS computational biology. 12 [PubMed]

Cunningham JP, Yu BM. (2014). Dimensionality reduction for large-scale neural recordings. Nature neuroscience. 17 [PubMed]

Dempster AP, Laird NM, Rubin DB. (1977). Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B. 39

Ecker AS et al. (2014). State dependence of noise correlations in macaque primary visual cortex. Neuron. 82 [PubMed]

Efron B. (2007). Size, Power And False Discovery Rates The Annals Of Statistics 1351–1377.

Efron B, Tibshirani R. (2002). Empirical bayes methods and false discovery rates for microarrays. Genetic epidemiology. 23 [PubMed]

Efron B, Tibshirani R, Storey JD, Tusher V. (2001). Empirical Bayes analysis of a microarray experiment. Journal Of The American Statistical Association. 96

Fan J, Feng Y, Wu Y. (2009). NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES. The annals of applied statistics. 3 [PubMed]

Foygel R, Drton M. (2010). Extended Bayesian information criteria for Gaussian graphical models. In Advances In Neural Information Processing Systems.

Friedman J, Hastie T, Tibshirani R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics (Oxford, England). 9 [PubMed]

Georgopoulos AP, Ashe J. (2000). One motor cortex, two different views. Nature neuroscience. 3 [PubMed]

Ghaoui LE, Banerjee O, d’Aspremont A. (2008). Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal Of Machine Learning Research. 9

Giraud C, Tsybakov A. (2012). Discussion: Latent variable graphical model selection via convex optimization. Annals Of Statistics. 40(4)

Goris RL, Movshon JA, Simoncelli EP. (2014). Partitioning neuronal variability. Nature neuroscience. 17 [PubMed]

Guerrero JL. (1994). Multivariate mutual information: sampling distribution with applications. Communications In Statistics-Theory And Methods. 23(5)

Gutnisky DA, Dragoi V. (2008). Adaptive coding of visual information in neural populations. Nature. 452 [PubMed]

Hastie TJ, Pregibon D. (1992). Chapter 6 Generalized linear models Statistical methods in S.

Hsieh CJ, Dhillon IS, Ravikumar PK, Sustik MA. (2011). Sparse inverse covariance matrix estimation using quadratic approximation Advances In Neural Information Processing Systems.

Kelly RC, Kass RE. (2012). A framework for evaluating pairwise and multiway synchrony among stimulus-driven neurons. Neural computation. 24 [PubMed]

Kelly RC, Smith MA, Kass RE, Lee TS. (2010). Local field potentials indicate network state and account for neuronal response variability. Journal of computational neuroscience. 29 [PubMed]

Kelly RC et al. (2007). Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Kerr JN, Denk W. (2008). Imaging in vivo: watching the brain in action. Nature reviews. Neuroscience. 9 [PubMed]

Kipke DR et al. (2008). Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Lin Y, Yuan M. (2006). Model selection and estimation in regression with grouped variables. Journal Of The Royal Statistical Society: Series B (Statistical Methodology). 68(1)

Lin Y, Yuan M. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika. 94(1)

Liu H, Wasserman L, Roeder K. (2010). Stability approach to regularization selection (stars) for high dimensional graphical models. In Advances In Neural Information Processing Systems.

Markram H et al. (2004). Interneurons of the neocortical inhibitory system. Nature reviews. Neuroscience. 5 [PubMed]

Mazumder R, Hastie T. (2012). The graphical lasso: New insights and alternatives. Electronic journal of statistics. 6 [PubMed]

Mitchell JF, Sundberg KA, Reynolds JH. (2009). Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron. 63 [PubMed]

Murphy KP. (2012). Machine Learning: A Probabilistic Perspective.

Nelder JA, Mccullagh P. (1989). Generalized linear models.

Poort J, Roelfsema PR. (2009). Noise correlations have little influence on the coding of selective attention in area V1. Cerebral cortex (New York, N.Y. : 1991). 19 [PubMed]

Rasch MJ, Schuch K, Logothetis NK, Maass W. (2011). Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1. Journal of neurophysiology. 105 [PubMed]

Rubin DB, Gelman A, Stern HS, Carlin J. (2004). Bayesian Data Analysis.

Samonds JM, Potetz BR, Lee TS. (2009). Cooperative and competitive interactions facilitate stereo computations in macaque primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Scott JG, Kelly RC, Smith MA, Zhou P, Kass RE. (2015). False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association. 110 [PubMed]

Shadlen MN, Newsome WT. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Shannon CE. (1964). Mathematical Theory Of Communications.

Shenoy KV et al. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. In Advances In Neural Information Processing Systems.

Sincich LC, Blasdel GG. (2001). Oriented axon projections in primary visual cortex of the monkey. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Smith MA, Jia X, Zandvakili A, Kohn A. (2013). Laminar dependence of neuronal correlations in visual cortex. Journal of neurophysiology. 109 [PubMed]

Smith MA, Kohn A. (2008). Spatial and temporal scales of neuronal correlation in primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Smith MA, Sommer MA. (2013). Spatial and temporal scales of neuronal correlation in visual area V4. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Song D et al. (2013). Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions. Journal of computational neuroscience. 35 [PubMed]

Stevenson IH, Kording KP. (2011). How advances in neural recording affect data analysis. Nature neuroscience. 14 [PubMed]

Tibshirani RJ, Hastie TJ. (1990). Generalized Additive Models. 43

Venables WN, Ripley BD. (2002). Modern Applied Statistics With S.

Vinci G, Ventura V, Smith MA, Kass RE. (2016). Separating Spike Count Correlation from Firing Rate Correlation. Neural computation. 28 [PubMed]

Wang H. (2012). Bayesian graphical lasso models and efficient posterior computation. Bayesian Analysis. 7

West M. (1987). On scale mixtures of normal distributions. Biometrika. 1

Willsky AS, Chandrasekaran V, Parrilo PA. (2012). Latent variable graphical model selection via convex optimization. Annals Of Statistics. 40

Wood SN. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal Of The Royal Statistical Society: Series B (Statistical Methodology). 73

Yatsenko D et al. (2015). Improved estimation and interpretation of correlations in neural circuits. PLoS computational biology. 11 [PubMed]

Yuan M. (2012). Discussion: latent variable graphical model selection via convex optimization. Annals Of Statistics. 40(4)

van den Heuvel MP, Sporns O. (2011). Rich-club organization of the human connectome. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.