Large cortex model with map-based neurons (Rulkov et al 2004)

We develop a new computationally efficient approach for the analysis of complex large-scale neurobiological networks. Its key element is the use of a new phenomenological model of a neuron capable of replicating important spike pattern characteristics and designed in the form of a system of difference equations (a map). ... Interconnected with synaptic currents these model neurons demonstrated responses very similar to those found with Hodgkin-Huxley models and in experiments. We illustrate the efficacy of this approach in simulations of one- and two-dimensional cortical network models consisting of regular spiking neurons and fast spiking interneurons to model sleep and activated states of the thalamocortical system. See paper for more.

Model Type: Realistic Network

Region(s) or Organism(s): Neocortex

Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex fast spiking (FS) interneuron

Receptors: GabaA; AMPA

Model Concept(s): Activity Patterns; Oscillations; Spatio-temporal Activity Patterns; Simplified Models; Sleep

Simulation Environment: C or C++ program

Implementer(s): Bazhenov, Maxim [Bazhenov at]; Rulkov, Nikolai [nrulkov at]


Rulkov NF, Timofeev I, Bazhenov M. (2004). Oscillations in large-scale cortical networks: map-based model. Journal of computational neuroscience. 17 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.