LTP in cerebellar mossy fiber-granule cell synapses (Saftenku 2002)


Saftenku EE. (2002). A simplified model of long-term plasticity in cerebellar mossy fiber-granule cell synapses. Neurophysiology/Neirofiziologiya. 34

See more from authors: Saftenku EE

References and models cited by this paper

Armano S, Rossi P, Taglietti V, D'Angelo E. (2000). Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Hansel C, Linden DJ, D'Angelo E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature neuroscience. 4 [PubMed]

Jonas P, Major G, Sakmann B. (1993). Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. The Journal of physiology. 472 [PubMed]

Lester RA, Jahr CE. (1992). NMDA channel behavior depends on agonist affinity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 12 [PubMed]

Mainen ZF, Malinow R, Svoboda K. (1999). Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature. 399 [PubMed]

Migliore M, Lansky P. (1999). Long-term potentiation and depression induced by a stochastic conditioning of a model synapse. Biophysical journal. 77 [PubMed]

References and models that cite this paper

Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML. (2010). Postsynaptic signal transduction models for long-term potentiation and depression. Frontiers in computational neuroscience. 4 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.