Bartos M, Manor Y, Nadim F, Marder E, Nusbaum MP. (1999). Coordination of fast and slow rhythmic neuronal circuits. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]
Bertram R, Sherman A. (2000). Dynamical complexity and temporal plasticity in pancreatic beta-cells. Journal of biosciences. 25 [PubMed]
Bressloff PC, Coombes S. (2005). Bursting: The genesis of rhythm in the nervous system.
Butera RJ. (1998). Multirhythmic bursting. Chaos (Woodbury, N.Y.). 8 [PubMed]
Canavier CC, Baxter DA, Clark JW, Byrne JH. (1994). Multiple modes of activity in a model neuron suggest a novel mechanism for the effects of neuromodulators. Journal of neurophysiology. 72 [PubMed]
Canavier CC, Clark JW, Byrne JH. (1991). Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. Journal of neurophysiology. 66 [PubMed]
Chay TR, Rinzel J. (1985). Bursting, beating, and chaos in an excitable membrane model. Biophysical journal. 47 [PubMed]
Destexhe A, Sejnowski TJ. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological reviews. 83 [PubMed]
Ermentrout GB, Kopell N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America. 95 [PubMed]
Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FE. (2005). Microcircuits in action--from CPGs to neocortex. Trends in neurosciences. 28 [PubMed]
Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM. (2004). ModelDB: A Database to Support Computational Neuroscience. Journal of computational neuroscience. 17 [PubMed]
Huguenard JR. (1996). Low-threshold calcium currents in central nervous system neurons. Annual review of physiology. 58 [PubMed]
Huguenard JR, McCormick DA. (1992). Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. Journal of neurophysiology. 68 [PubMed]
Izhikevich EM, Hoppensteadt FC. (2004). Classification of bursting mappings Intl J Bifurcation And Chaos. 14
Keener J, Sneyd J. (1998). Mathematical Physiology Interdisciplinary Applied Mathematics. 8
Kopell N, Bose A, Terman D. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D. 117
Lechner HA, Baxter DA, Clark JW, Byrne JH. (1996). Bistability and its regulation by serotonin in the endogenously bursting neuron R15 in Aplysia. Journal of neurophysiology. 75 [PubMed]
Llinás RR, Steriade M. (2006). Bursting of thalamic neurons and states of vigilance. Journal of neurophysiology. 95 [PubMed]
LoFaro T, Kopell N. (1999). Timing regulation in a network reduced from voltage-gated equations to a one-dimensional map. Journal of mathematical biology. 38 [PubMed]
Manor Y, Nadim F. (2001). Synaptic depression mediates bistability in neuronal networks with recurrent inhibitory connectivity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]
Marder E, Calabrese RL. (1996). Principles of rhythmic motor pattern generation. Physiological reviews. 76 [PubMed]
Masino MA, Calabrese RL. (2002). Period differences between segmental oscillators produce intersegmental phase differences in the leech heartbeat timing network. Journal of neurophysiology. 87 [PubMed]
Medvedev G. (2005). Reduction of a model of an excitable cell to a one-dimensional map Physica D. 202
Morris C, Lecar H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical journal. 35 [PubMed]
Nadim F, Manor Y, Bose A. (2001). Bistable oscillations arising from synaptic depression. Siam J Appl Math. 62
Perkel DH, Mulloney B. (1974). Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science (New York, N.Y.). 185 [PubMed]
Rinzel J, Wang XJ. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons Neural Comput. 4
Rubin J, Terman D. (2000). Geometric analysis of population rhythms in synaptically coupled neuronal networks. Neural computation. 12 [PubMed]
Satterlie RA. (1985). Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator Science. 229
Selverston AI, Moulins M. (1987). The Crustacean Stomatogastric System.
Skinner FK, Kopell N, Marder E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of computational neuroscience. 1 [PubMed]
Sohal VS, Huguenard JR. (2001). It takes T to tango. Neuron. 31 [PubMed]
Terman D. (1991). Chaotic spikes arising from a model of bursting in excitable membranes. Siam J Appl Math. 51
Terman D, Lee E. (1999). Uniqueness and stability of periodic bursting solutions Journal Of Difference Equations. 158
Traub RD, Whittington MA, Colling SB, Buzsáki G, Jefferys JG. (1996). Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. The Journal of physiology. 493 ( Pt 2) [PubMed]
Van Vreeswijk C, Abbott LF, Ermentrout GB. (1994). When inhibition not excitation synchronizes neural firing. Journal of computational neuroscience. 1 [PubMed]
Wang XJ, Buzsáki G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]
Wang XJ, Rinzel J. (1993). Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience. 53 [PubMed]
Komarov M, Bazhenov M. (2016). Linking dynamics of the inhibitory network to the input structure. Journal of computational neuroscience. 41 [PubMed]