Marder E, Calabrese RL. (1996). Principles of rhythmic motor pattern generation. Physiological reviews. 76 [PubMed]

See more from authors: Marder E · Calabrese RL

References and models cited by this paper
References and models that cite this paper

Baxter DA, Byrne JH, Cataldo E. (2006). Computational Model of a Central Pattern Generator CMSB 2006, Lecture Notes in Bioinformatics LNBI 4210.

Beer RD. (2006). Parameter space structure of continuous-time recurrent neural networks. Neural computation. 18 [PubMed]

Bose A, Manor Y, Nadim F. (2004). The activity phase of postsynaptic neurons in a simplified rhythmic network. Journal of computational neuroscience. 17 [PubMed]

Carlu M et al. (2020). A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin-Huxley models. Journal of neurophysiology. 123 [PubMed]

Chandrasekaran L, Matveev V, Bose A. (2009). Multistability of clustered states in a globally inhibitory network Physica D: Nonlinear Phenomena. 238(3)

Channell P, Fuwape I, Neiman AB, Shilnikov AL. (2009). Variability of bursting patterns in a neuron model in the presence of noise. Journal of computational neuroscience. 27 [PubMed]

Cymbalyuk G, Shilnikov A. (2005). Coexistence of tonic spiking oscillations in a leech neuron model. Journal of computational neuroscience. 18 [PubMed]

Doloc-Mihu A, Calabrese RL. (2011). A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity. Journal of biological physics. 37 [PubMed]

Ferrario A, Merrison-Hort R, Soffe SR, Borisyuk R. (2018). Structural and functional properties of a probabilistic model of neuronal connectivity in a simple locomotor network. eLife. 7 [PubMed]

Grisham W, Schottler NA, Krasne FB. (2008). SWIMMY: Free Software for Teaching Neurophysiology of Neuronal Circuits. Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience. 7 [PubMed]

Gutierrez GJ, O'Leary T, Marder E. (2013). Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron. 77 [PubMed]

Günay C, Doloc-Mihu A, Lamb DG, Calabrese RL. (2019). Synaptic Strengths Dominate Phasing of Motor Circuit: Intrinsic Conductances of Neuron Types Need Not Vary across Animals. eNeuro. 6 [PubMed]

Günay C, Prinz AA. (2010). Model calcium sensors for network homeostasis: sensor and readout parameter analysis from a database of model neuronal networks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Hill AA, Lu J, Masino MA, Olsen OH, Calabrese RL. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of computational neuroscience. 10 [PubMed]

Karbowski J, Schindelman G, Cronin CJ, Seah A, Sternberg PW. (2008). Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. Journal of computational neuroscience. 24 [PubMed]

Komarov M, Bazhenov M. (2016). Linking dynamics of the inhibitory network to the input structure. Journal of computational neuroscience. 41 [PubMed]

Kozlov A, Kotaleski JH, Aurell E, Grillner S, Lansner A. (2001). Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation. Journal of computational neuroscience. 11 [PubMed]

Kretzberg J, Warzecha AK, Egelhaaf M. (2001). Neural coding with graded membrane potential changes and spikes. Journal of computational neuroscience. 11 [PubMed]

Lamb DG, Calabrese RL. (2013). Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PloS one. 8 [PubMed]

Manor Y, Bose A, Booth V, Nadim F. (2003). Contribution of synaptic depression to phase maintenance in a model rhythmic network. Journal of neurophysiology. 90 [PubMed]

Maran SK, Sieling FH, Demla K, Prinz AA, Canavier CC. (2011). Responses of a bursting pacemaker to excitation reveal spatial segregation between bursting and spiking mechanisms. Journal of computational neuroscience. 31 [PubMed]

Matveev V, Bose A, Nadim F. (2007). Capturing the bursting dynamics of a two-cell inhibitory network using a one-dimensional map. Journal of computational neuroscience. 23 [PubMed]

Nadim F, Manor Y, Kopell N, Marder E. (1999). Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. Proceedings of the National Academy of Sciences of the United States of America. 96 [PubMed]

Nadim F, Manor Y, Nusbaum MP, Marder E. (1998). Frequency regulation of a slow rhythm by a fast periodic input. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Narayanan R, Johnston D. (2007). Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron. 56 [PubMed]

Oprisan SA. (2017). Predicting the Existence and Stability of Phase-Locked Mode in Neural Networks Using Generalized Phase-Resetting Curve. Neural computation. 29 [PubMed]

Parker JR, Klishko AN, Prilutsky BI, Cymbalyuk GS. (2021). Asymmetric and transient properties of reciprocal activity of antagonists during the paw-shake response in the cat PLoS computational biology. 17 [PubMed]

Psujek S, Ames J, Beer RD. (2006). Connection and coordination: the interplay between architecture and dynamics in evolved model pattern generators. Neural computation. 18 [PubMed]

Sakurai A, Darghouth NR, Butera RJ, Katz PS. (2006). Serotonergic enhancement of a 4-AP-sensitive current mediates the synaptic depression phase of spike timing-dependent neuromodulation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Saraga F, Skinner FK. (2002). Dynamics and diversity in interneurons: a model exploration with slowly inactivating potassium currents. Neuroscience. 113 [PubMed]

Shao J, Lai D, Meyer U, Luksch H, Wessel R. (2009). Generating oscillatory bursts from a network of regular spiking neurons without inhibition. Journal of computational neuroscience. 27 [PubMed]

Stein W, Straub O, Ausborn J, Mader W, Wolf H. (2008). Motor pattern selection by combinatorial code of interneuronal pathways. Journal of computational neuroscience. 25 [PubMed]

Susswein AJ, Hurwitz I, Thorne R, Byrne JH, Baxter DA. (2002). Mechanisms underlying fictive feeding in aplysia: coupling between a large neuron with plateau potentials activity and a spiking neuron. Journal of neurophysiology. 87 [PubMed]

Tabak J, O'Donovan MJ, Rinzel J. (2006). Differential control of active and silent phases in relaxation models of neuronal rhythms. Journal of computational neuroscience. 21 [PubMed]

Tobin AE, Calabrese RL. (2006). Endogenous and half-center bursting in morphologically inspired models of leech heart interneurons. Journal of neurophysiology. 96 [PubMed]

Vavoulis DV et al. (2007). Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network. The European journal of neuroscience. 25 [PubMed]

Wystrach A, Lagogiannis K, Webb B. (2016). Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae. eLife. 5 [PubMed]

Zheng M, Friesen WO, Iwasaki T. (2007). Systems-level modeling of neuronal circuits for leech swimming. Journal of computational neuroscience. 22 [PubMed]

van Drongelen W et al. (2006). Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. Journal of neurophysiology. 96 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.