Interaction of leak and IMI conductance on the STG over broad temperature range (Stadele et al 2015)


The ZIP file contains a Hodgkin-Huxley based circuit model and the simulation environment MadSim used to study the interaction of leak and IMI on the gastric mill network of the crab (Cancer borealis) as represented in (C. Städele, S. Heigele and W. Stein, 2015) MadSim, the simulation environment used for this study, is freeware and included in the package.

Model Type: Realistic Network

Region(s) or Organism(s): Stomatogastric ganglion

Cell Type(s): Stomatogastric Ganglion (STG) Lateral Gastric (LG) cell

Currents: I MI

Transmitters: CabTRP 1a

Model Concept(s): Temporal Pattern Generation; Invertebrate; Neuromodulation

Simulation Environment: MadSim

References:

Stein W, Straub O, Ausborn J, Mader W, Wolf H. (2008). Motor pattern selection by combinatorial code of interneuronal pathways. Journal of computational neuroscience. 25 [PubMed]

Ausborn J, Stein W, Wolf H. (2007). Frequency control of motor patterning by negative sensory feedback. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Städele C, Heigele S, Stein W. (2015). Neuromodulation to the Rescue: Compensation of Temperature-Induced Breakdown of Rhythmic Motor Patterns via Extrinsic Neuromodulatory Input. PLoS biology. 13 [PubMed]

Daur N, Diehl F, Mader W, Stein W. (2012). The stomatogastric nervous system as a model for studying sensorimotor interactions in real-time closed-loop conditions. Frontiers in computational neuroscience. 6 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.