Arnold V, Iliyashenko Y, Shilinikov L. (1994). Dynamical Systems *Encyclopaedia of Mathematical Sciences*.

Bal T, Nagy F, Et al . (1988). The pyloric central pattern generator in crustacea: A set of conditional neuronal oscillators *J Comp Physiol*. 163

Bertram R, Butte MJ, Kiemel T, Sherman A. (1995). Topological and phenomenological classification of bursting oscillations. *Bulletin of mathematical biology*. 57 [PubMed]

Bulsara AR, Schieve WC, Jacobs EW. (1990). Homoclinic chaos in systems perturbed by weak Langevin noise. *Physical review. A, Atomic, molecular, and optical physics*. 41 [PubMed]

Calabrese RL, Cymbalyuk GS. (2001). A model of slow plateau-like oscillations based upon the fast Na+ current in a window mode *Neurocomputing*. 38

Carelli PV, Reyes MB, Sartorelli JC, Pinto RD. (2005). Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. *Journal of neurophysiology*. 94 [PubMed]

Chay TR. (1985). Chaos in a three-variable model of an excitable cell *Physica*. 16

Chow CC, White JA. (1996). Spontaneous action potentials due to channel fluctuations. *Biophysical journal*. 71 [PubMed]

Clewley R, Soto-Treviño C, Nadim F. (2009). Dominant ionic mechanisms explored in spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. *Journal of computational neuroscience*. 26 [PubMed]

Cymbalyuk G, Shilnikov A. (2005). Coexistence of tonic spiking oscillations in a leech neuron model. *Journal of computational neuroscience*. 18 [PubMed]

Cymbalyuk GS, Gaudry Q, Masino MA, Calabrese RL. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 22 [PubMed]

Deng B, Hines G. (2002). Food chain chaos due to Shilnikov's orbit. *Chaos (Woodbury, N.Y.)*. 12 [PubMed]

Ditto WL et al. (1994). Controlling chaos in the brain. *Nature*. 370

Elson RC, Huerta R, Abarbanel HD, Rabinovich MI, Selverston AI. (1999). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. *Journal of neurophysiology*. 82 [PubMed]

Elson RC, Selverston AI, Abarbanel HD, Rabinovich MI. (2002). Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant. *Journal of neurophysiology*. 88 [PubMed]

Fenichel N. (1979). Geometric singular perturbation theory for ordinary differential equations *J Diff Eqn*. 31

Galán RF, Ermentrout GB, Urban NN. (2008). Optimal time scale for spike-time reliability: theory, simulations, and experiments. *Journal of neurophysiology*. 99 [PubMed]

Goldobin DS, Pikovsky A. (2005). Synchronization and desynchronization of self-sustained oscillators by common noise. *Physical review. E, Statistical, nonlinear, and soft matter physics*. 71 [PubMed]

Goldobin DS, Pikovsky A. (2006). Antireliability of noise-driven neurons. *Physical review. E, Statistical, nonlinear, and soft matter physics*. 73 [PubMed]

Griffiths RE, Pernarowski MC. (2006). Return map characterizations for a model of bursting with two slow variables *Siam Journal On Applied Mathemati*. 66

Gu H, Yang M, Li L, Liu Z, Ren W. (2002). Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker. *Neuroreport*. 13 [PubMed]

Guckenheimer J. (1996). Towards a global theory of singularly perturbed dynamical systems *Prog Non Diff Eqn Appl*. 19

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. *The Journal of physiology*. 117 [PubMed]

- Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
- Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
- Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
- Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]
- Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]

Hayashi H, Ishizuka S. (1995). Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. *Brain research*. 686 [PubMed]

Hill AA, Lu J, Masino MA, Olsen OH, Calabrese RL. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. *Journal of computational neuroscience*. 10 [PubMed]

Holden AV, Fan Y. (1992). From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity *Chaos Solitons Fractals*. 2

Holden AV, Fan YS. (1995). Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity *Solitons And Fractals*. 3

Izhikevich EM. (2000). Neural excitability, spiking and bursting *Int J Bifurcat Chaos Appl Sci Eng*. 10

Izhikevich EM. (2007). *Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting*.

Kantz H, Jaeger L. (1997). Homoclinic tangencies and nonnormal jacobians-effects of noise in nonhyperbolic chaotic systems *Physica D*. 105

Kopell N. (1988). Toward a theory of modelling central pattern generators *Neural Control Of Rhythmic Movements In Vertebrates*.

Kopell N, Jones CKRT. (1994). Tracking invariant-manifolds with differential forms in singularly perturbed systems *Journal Of Differential Equations*. 108

Kramer MA, Traub RD, Kopell NJ. (2008). New dynamics in cerebellar Purkinje cells: torus canards. *Physical review letters*. 101 [PubMed]

Kuske R, Baer SM. (2002). Asymptotic analysis of noise sensitivity in a neuronal burster. *Bulletin of mathematical biology*. 64 [PubMed]

Li L, Yang Z, Qishao L. (2006). The genesis of period-adding bursting without bursting-chaos in the Chay model *Chaos Solitons And Fractals*. 27(3)

Mainen ZF, Sejnowski TJ. (1995). Reliability of spike timing in neocortical neurons. *Science (New York, N.Y.)*. 268 [PubMed]

Manwani A, Koch C. (1999). Detecting and estimating signals in noisy cable structure, I: neuronal noise sources. *Neural computation*. 11 [PubMed]

Marder E, Calabrese RL. (1996). Principles of rhythmic motor pattern generation. *Physiological reviews*. 76 [PubMed]

Medvedev G. (2005). Reduction of a model of an excitable cell to a one-dimensional map *Physica D*. 202

Medvedev GS. (2006). Transition to bursting via deterministic chaos. *Physical review letters*. 97 [PubMed]

Mira C. (1987). *Chaotic dynamics from the one-dimensional endomorphism to the two-dimensional diffeomorphism*.

Mosekilde E, Belykh VN, Belykh IV, Colding-jorgensen M. (2000). Homoclinic bifurcations leading to bursting oscillations in cell models *The European Physical Journal E-soft Matt*. 3

Pedersen MG, Sorensen MP. (2007). The effect of noise of beta-cell burst period *Siam Journal On Applied Mathematics*. 67

Pei X, Moss F. (1996). Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor. *Nature*. 379 [PubMed]

Pei X et al. (2000). Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. *Chaos*. 10

Pontryagin LS, Rodygin LV. (1960). Periodic solution of a system ofordinary differential equations with a small parameter in the termscontaining derivatives *Sov Math Dokl*. 1

Rinzel J. (1985). Bursting oscillations in an excitable membrane model, in ordinary and partial differential equations *New Lecture Notes in Mathematics*. 1151

Rinzel J, Ermentrout GB. (1989). Analysis of neuronal excitability and oscillations *Methods In Neuronal Modeling: From Synapses To Networks*.

Rinzel J, Wang XJ. (1995). Oscillatory and bursting properties of neurons. *The handbook of brain theory and neural networks*.

Rowat P. (2007). Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. *Neural computation*. 19 [PubMed]

Rowat PF, Elson RC. (2004). State-dependent effects of Na channel noise on neuronal burst generation. *Journal of computational neuroscience*. 16 [PubMed]

Rulkov NF, Shilnikov AL. (2003). Origin of chaos in a twodimensional map modeling spiking-bursting neural activity *Int J Bif And Chaos*. 13

Rulkov NF, Shilnikov AL. (2004). Subthreshold oscillations in amapbasedneuron model *Physics Letters A*. 328

Selverston AI, Rabinovich MI, Abarbanel HDI, Varona P. (2006). Dynamical principles in neuroscience *Rev Mod Phys*. 78

Sharkovsky AN, Kolyada SF, Sivak AG, Fedorenko VV. (1997). Dynamics of one-dimensional maps *Mathematics and its applications*. 407

Shilnikov A, Calabrese RL, Cymbalyuk G. (2005). Mechanism of bistability: tonic spiking and bursting in a neuron model. *Physical review. E, Statistical, nonlinear, and soft matter physics*. 71 [PubMed]

Shilnikov A, Cymbalyuk G. (2004). Homoclinic saddle-node orbit bifurcations en a route between tonic spiking and bursting in neuron models, invited paper *Regular Chaotic Dynamics*. 9

Shilnikov A, Cymbalyuk G. (2005). Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. *Physical review letters*. 94 [PubMed]

Shilnikov A, Cymbalyuk G, Channell P. (2007). Origin of bursting through homoclinic spike adding in a neuron model. *Phys Rev Lett*. 98

Shilnikov AL. (1993). On bifurcations of the Lorenz attractor in the Shimizu-Morioka model *Physica D*. 62(1-4)

Shilnikov AL, Cymbalyuk G, Channell P. (2007). Applications of the poincare mapping technique to analysis of neuronal dynamics *Neurocomputing*. 70

Shilnikov AL, Kolomiets ML. (2008). Methods of the qualitative theory for the Hindmarsh-Rose model: A case study *International Journal Of Bifurcation And Chaos*. 18(7)

Shilnikov AL, Shilnikov LP, Turaev DV, Chua LO. (1998). *Methods Qualitative Theory in Nonlinear Dynamics*. I

Shilnikov LP, Gavrilov NK. (1972). On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve *Sborn*. 17(3)

So P et al. (1996). Detecting unstable periodic orbits in chaotic experimental data. *Physical review letters*. 76 [PubMed]

Steriade M, Jones EG, Llinas RR. (1990). *Thalamic Oscillations And Signalling*.

Steriade M, McCormick DA, Sejnowski TJ. (1993). Thalamocortical oscillations in the sleeping and aroused brain. *Science (New York, N.Y.)*. 262 [PubMed]

Terman D. (1991). Chaotic spikes arising from a model of bursting in excitable membranes. *Siam J Appl Math*. 51

Terman D. (1992). The transition from bursting to continuous spiking in excitable membrane models *J Nonlinear Sci*. 2

Terman D, Rubin J, Su JZ. (2004). Effects of noise on elliptic bursters *Nonlinearity*. 17

Tikhonov AN. (1948). On the dependence of solutions of differential equations from a small parameter *Matematicheskie Sbornik*. 22(64)

Wang XJ. (1993). Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle *Phys D*. 62