Arnold V, Iliyashenko Y, Shilinikov L. (1994). Dynamical Systems Encyclopaedia of Mathematical Sciences.
Bal T, Nagy F, Et al . (1988). The pyloric central pattern generator in crustacea: A set of conditional neuronal oscillators J Comp Physiol. 163
Bertram R, Butte MJ, Kiemel T, Sherman A. (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of mathematical biology. 57 [PubMed]
Bulsara AR, Schieve WC, Jacobs EW. (1990). Homoclinic chaos in systems perturbed by weak Langevin noise. Physical review. A, Atomic, molecular, and optical physics. 41 [PubMed]
Calabrese RL, Cymbalyuk GS. (2001). A model of slow plateau-like oscillations based upon the fast Na+ current in a window mode Neurocomputing. 38
Carelli PV, Reyes MB, Sartorelli JC, Pinto RD. (2005). Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. Journal of neurophysiology. 94 [PubMed]
Chay TR. (1985). Chaos in a three-variable model of an excitable cell Physica. 16
Chow CC, White JA. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical journal. 71 [PubMed]
Clewley R, Soto-Treviño C, Nadim F. (2009). Dominant ionic mechanisms explored in spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of computational neuroscience. 26 [PubMed]
Cymbalyuk G, Shilnikov A. (2005). Coexistence of tonic spiking oscillations in a leech neuron model. Journal of computational neuroscience. 18 [PubMed]
Cymbalyuk GS, Gaudry Q, Masino MA, Calabrese RL. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Deng B, Hines G. (2002). Food chain chaos due to Shilnikov's orbit. Chaos (Woodbury, N.Y.). 12 [PubMed]
Ditto WL et al. (1994). Controlling chaos in the brain. Nature. 370
Elson RC, Huerta R, Abarbanel HD, Rabinovich MI, Selverston AI. (1999). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. Journal of neurophysiology. 82 [PubMed]
Elson RC, Selverston AI, Abarbanel HD, Rabinovich MI. (2002). Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant. Journal of neurophysiology. 88 [PubMed]
Fenichel N. (1979). Geometric singular perturbation theory for ordinary differential equations J Diff Eqn. 31
Galán RF, Ermentrout GB, Urban NN. (2008). Optimal time scale for spike-time reliability: theory, simulations, and experiments. Journal of neurophysiology. 99 [PubMed]
Goldobin DS, Pikovsky A. (2005). Synchronization and desynchronization of self-sustained oscillators by common noise. Physical review. E, Statistical, nonlinear, and soft matter physics. 71 [PubMed]
Goldobin DS, Pikovsky A. (2006). Antireliability of noise-driven neurons. Physical review. E, Statistical, nonlinear, and soft matter physics. 73 [PubMed]
Griffiths RE, Pernarowski MC. (2006). Return map characterizations for a model of bursting with two slow variables Siam Journal On Applied Mathemati. 66
Gu H, Yang M, Li L, Liu Z, Ren W. (2002). Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker. Neuroreport. 13 [PubMed]
Guckenheimer J. (1996). Towards a global theory of singularly perturbed dynamical systems Prog Non Diff Eqn Appl. 19
HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]
Hayashi H, Ishizuka S. (1995). Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. Brain research. 686 [PubMed]
Hill AA, Lu J, Masino MA, Olsen OH, Calabrese RL. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of computational neuroscience. 10 [PubMed]
Holden AV, Fan Y. (1992). From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity Chaos Solitons Fractals. 2
Holden AV, Fan YS. (1995). Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity Solitons And Fractals. 3
Izhikevich EM. (2000). Neural excitability, spiking and bursting Int J Bifurcat Chaos Appl Sci Eng. 10
Izhikevich EM. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.
Kantz H, Jaeger L. (1997). Homoclinic tangencies and nonnormal jacobians-effects of noise in nonhyperbolic chaotic systems Physica D. 105
Kopell N. (1988). Toward a theory of modelling central pattern generators Neural Control Of Rhythmic Movements In Vertebrates.
Kopell N, Jones CKRT. (1994). Tracking invariant-manifolds with differential forms in singularly perturbed systems Journal Of Differential Equations. 108
Kramer MA, Traub RD, Kopell NJ. (2008). New dynamics in cerebellar Purkinje cells: torus canards. Physical review letters. 101 [PubMed]
Kuske R, Baer SM. (2002). Asymptotic analysis of noise sensitivity in a neuronal burster. Bulletin of mathematical biology. 64 [PubMed]
Li L, Yang Z, Qishao L. (2006). The genesis of period-adding bursting without bursting-chaos in the Chay model Chaos Solitons And Fractals. 27(3)
Mainen ZF, Sejnowski TJ. (1995). Reliability of spike timing in neocortical neurons. Science (New York, N.Y.). 268 [PubMed]
Manwani A, Koch C. (1999). Detecting and estimating signals in noisy cable structure, I: neuronal noise sources. Neural computation. 11 [PubMed]
Marder E, Calabrese RL. (1996). Principles of rhythmic motor pattern generation. Physiological reviews. 76 [PubMed]
Medvedev G. (2005). Reduction of a model of an excitable cell to a one-dimensional map Physica D. 202
Medvedev GS. (2006). Transition to bursting via deterministic chaos. Physical review letters. 97 [PubMed]
Mira C. (1987). Chaotic dynamics from the one-dimensional endomorphism to the two-dimensional diffeomorphism.
Mosekilde E, Belykh VN, Belykh IV, Colding-jorgensen M. (2000). Homoclinic bifurcations leading to bursting oscillations in cell models The European Physical Journal E-soft Matt. 3
Pedersen MG, Sorensen MP. (2007). The effect of noise of beta-cell burst period Siam Journal On Applied Mathematics. 67
Pei X, Moss F. (1996). Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor. Nature. 379 [PubMed]
Pei X et al. (2000). Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos. 10
Pontryagin LS, Rodygin LV. (1960). Periodic solution of a system ofordinary differential equations with a small parameter in the termscontaining derivatives Sov Math Dokl. 1
Rinzel J. (1985). Bursting oscillations in an excitable membrane model, in ordinary and partial differential equations New Lecture Notes in Mathematics. 1151
Rinzel J, Ermentrout GB. (1989). Analysis of neuronal excitability and oscillations Methods In Neuronal Modeling: From Synapses To Networks.
Rinzel J, Wang XJ. (1995). Oscillatory and bursting properties of neurons. The handbook of brain theory and neural networks.
Rowat P. (2007). Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural computation. 19 [PubMed]
Rowat PF, Elson RC. (2004). State-dependent effects of Na channel noise on neuronal burst generation. Journal of computational neuroscience. 16 [PubMed]
Rulkov NF, Shilnikov AL. (2003). Origin of chaos in a twodimensional map modeling spiking-bursting neural activity Int J Bif And Chaos. 13
Rulkov NF, Shilnikov AL. (2004). Subthreshold oscillations in amapbasedneuron model Physics Letters A. 328
Selverston AI, Rabinovich MI, Abarbanel HDI, Varona P. (2006). Dynamical principles in neuroscience Rev Mod Phys. 78
Sharkovsky AN, Kolyada SF, Sivak AG, Fedorenko VV. (1997). Dynamics of one-dimensional maps Mathematics and its applications. 407
Shilnikov A, Calabrese RL, Cymbalyuk G. (2005). Mechanism of bistability: tonic spiking and bursting in a neuron model. Physical review. E, Statistical, nonlinear, and soft matter physics. 71 [PubMed]
Shilnikov A, Cymbalyuk G. (2004). Homoclinic saddle-node orbit bifurcations en a route between tonic spiking and bursting in neuron models, invited paper Regular Chaotic Dynamics. 9
Shilnikov A, Cymbalyuk G. (2005). Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Physical review letters. 94 [PubMed]
Shilnikov A, Cymbalyuk G, Channell P. (2007). Origin of bursting through homoclinic spike adding in a neuron model. Phys Rev Lett. 98
Shilnikov AL. (1993). On bifurcations of the Lorenz attractor in the Shimizu-Morioka model Physica D. 62(1-4)
Shilnikov AL, Cymbalyuk G, Channell P. (2007). Applications of the poincare mapping technique to analysis of neuronal dynamics Neurocomputing. 70
Shilnikov AL, Kolomiets ML. (2008). Methods of the qualitative theory for the Hindmarsh-Rose model: A case study International Journal Of Bifurcation And Chaos. 18(7)
Shilnikov AL, Shilnikov LP, Turaev DV, Chua LO. (1998). Methods Qualitative Theory in Nonlinear Dynamics. I
Shilnikov LP, Gavrilov NK. (1972). On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve Sborn. 17(3)
So P et al. (1996). Detecting unstable periodic orbits in chaotic experimental data. Physical review letters. 76 [PubMed]
Steriade M, Jones EG, Llinas RR. (1990). Thalamic Oscillations And Signalling.
Steriade M, McCormick DA, Sejnowski TJ. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science (New York, N.Y.). 262 [PubMed]
Terman D. (1991). Chaotic spikes arising from a model of bursting in excitable membranes. Siam J Appl Math. 51
Terman D. (1992). The transition from bursting to continuous spiking in excitable membrane models J Nonlinear Sci. 2
Terman D, Rubin J, Su JZ. (2004). Effects of noise on elliptic bursters Nonlinearity. 17
Tikhonov AN. (1948). On the dependence of solutions of differential equations from a small parameter Matematicheskie Sbornik. 22(64)
Wang XJ. (1993). Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle Phys D. 62