Bertram R, Rhoads J, Cimbora WP. (2008). A phantom bursting mechanism for episodic bursting. Bulletin of mathematical biology. 70 [PubMed]
Breen BJ, Gerken WC, Butera RJ. (2003). Hybrid integrate-and-fire model of a bursting neuron. Neural computation. 15 [PubMed]
Butera RJ, Rinzel J, Smith JC. (1999). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of neurophysiology. 82 [PubMed]
Channell P, Fuwape I, Neiman AB, Shilnikov AL. (2009). Variability of bursting patterns in a neuron model in the presence of noise. Journal of computational neuroscience. 27 [PubMed]
Diekman CO, Thomas PJ, Wilson CG. (2017). Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model. Journal of neurophysiology. 118 [PubMed]
Doi S, Kumagai S. (2005). Generation of very slow neuronal rhythms and chaos near the Hopf bifurcation in single neuron models. Journal of computational neuroscience. 19 [PubMed]
Doiron B, Laing C, Longtin A, Maler L. (2002). Ghostbursting: a novel neuronal burst mechanism. Journal of computational neuroscience. 12 [PubMed]
Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35
Golomb D et al. (2007). Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS computational biology. 3 [PubMed]
Golomb D, Shedmi A, Curtu R, Ermentrout GB. (2006). Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. Journal of neurophysiology. 95 [PubMed]
Golomb D, Yue C, Yaari Y. (2006). Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. Journal of neurophysiology. 96 [PubMed]
Hayut I, Fanselow EE, Connors BW, Golomb D. (2011). LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS computational biology. 7 [PubMed]
Li YX, Bertram R, Rinzel J. (1996). Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience. 71 [PubMed]
Mandelblat Y, Etzion Y, Grossman Y, Golomb D. (2001). Period doubling of calcium spike firing in a model of a Purkinje cell dendrite. Journal of computational neuroscience. 11 [PubMed]
Phillips AJ, Robinson PA. (2007). A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. Journal of biological rhythms. 22 [PubMed]
Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA. (2009). Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proceedings of the National Academy of Sciences of the United States of America. 106 [PubMed]
Sharples SA et al. (2021). Mechanisms of Episodic Rhythmicity Contributions of h-and Na+/K+ pump currents to the generation of episodic and continuous rhythmic activities Frontiers in cellular neuroscience. 15 [PubMed]
Sherman AS, Ha J. (2017). How Adaptation Makes Low Firing Rates Robust. Journal of mathematical neuroscience. 7 [PubMed]
Shorten PR, Wall DJ. (2000). A Hodgkin-Huxley model exhibiting bursting oscillations. Bulletin of mathematical biology. 62 [PubMed]
Tabak J, Toporikova N, Freeman ME, Bertram R. (2007). Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. Journal of computational neuroscience. 22 [PubMed]
Teka W, Tabak J, Bertram R. (2012). The relationship between two fast/slow analysis techniques for bursting oscillations. Chaos (Woodbury, N.Y.). 22 [PubMed]
Upchurch CM, Knowlton CJ, Chamberland S, Canavier CC. (2024). Persistent Interruption in Parvalbumin-Positive Inhibitory Interneurons: Biophysical and Mathematical Mechanisms. eNeuro. 11 [PubMed]
Vo T, Tabak J, Bertram R, Wechselberger M. (2014). A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells. Journal of computational neuroscience. 36 [PubMed]
Yu N, Canavier CC. (2015). A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. Journal of mathematical neuroscience. 5 [PubMed]