Baer SM, Rinzel J, Carrillo H. (1995). Analysis of an autonomous phase model for neuronal parabolic bursting. Journal of mathematical biology. 33 [PubMed]
Bertram R. (1994). Reduced-system analysis of the effects of serotonin on a molluscan burster neuron. Biological cybernetics. 70 [PubMed]
Bertram R, Butte MJ, Kiemel T, Sherman A. (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of mathematical biology. 57 [PubMed]
Butera RJ, Clark JW, Byrne JH. (1996). Dissection and reduction of a modeled bursting neuron. Journal of computational neuroscience. 3 [PubMed]
Butera RJ, Clark JW, Canavier CC, Baxter DA, Byrne JH. (1995). Analysis of the effects of modulatory agents on a modeled bursting neuron: dynamic interactions between voltage and calcium dependent systems. Journal of computational neuroscience. 2 [PubMed]
Butera RJ, Rinzel J, Smith JC. (1999). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of neurophysiology. 82 [PubMed]
Butera RJ, Rinzel J, Smith JC. (1999). Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations Of coupled pacemaker neurons. Journal of neurophysiology. 82 [PubMed]
Byrne JH, Butera RB. (1997). Transient responses of a modeled bursting neuron: Analysis with equilibrium and averaged nullclines Biol Cyber. 77
Canavier CC, Clark JW, Byrne JH. (1991). Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. Journal of neurophysiology. 66 [PubMed]
Destexhe A. (1997). Conductance-based integrate-and-fire models. Neural computation. 9 [PubMed]
Ermentrout GB. (1994). Reduction of conductance based models with slow synapses to neural networks. Neural Computation. 6
Ermentrout GB. (2002). Simulating, Analyzing, and Animating Dynamical System: A Guide to XPPAUT for Researchers and Students Society for Industrial and Applied Mathematics (SIAM).
Hansel D, Mato G. (2003). Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural computation. 15 [PubMed]
Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]
Hines ML, Carnevale NT. (2000). Expanding NEURON's repertoire of mechanisms with NMODL. Neural computation. 12 [PubMed]
Izhikevich EM. (2000). Neural excitability, spiking and bursting Int J Bifurcat Chaos Appl Sci Eng. 10
Kepler TB, Abbott LF, Marder E. (1992). Reduction of conductance-based neuron models. Biological cybernetics. 66 [PubMed]
Koch C. (1999). Biophysics Of Computation: Information Processing in Single Neurons.
Lapicque L. (1907). Recherches quantitatives sur lexcitation electrique des nerfs traitee comme une polarisation J Physiol Pathol Gen. 9
Macgregor RJ. (1987). Neural and Brain Modeling..
Press WH, Teukolsky SA, Flannery BP, Vellerling WT. (1992). Numerical Recipes In C: The Art Of Scientific Computing.
Rinzel J. (1985). Bursting oscillations in an excitable membrane model, in ordinary and partial differential equations New Lecture Notes in Mathematics. 1151
Rinzel J. (1987). A formal classification of bursting mechanisms in excitable systems. Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences.. 71
Rinzel J, Lee YS. (1987). Dissection of a model for neuronal parabolic bursting. Journal of mathematical biology. 25 [PubMed]
Rinzel J, Smolen P, Terman D. (1993). Properties of a bursting model with two slow inhibitory variables SIAM J App Math. 53
Smith GD, Cox CL, Sherman SM, Rinzel J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of neurophysiology. 83 [PubMed]
Terman D. (1992). The transition from bursting to continuous spiking in excitable membrane models J Nonlinear Sci. 2
Carnevale NT, Morse TM. (1996). Research reports that have used NEURON Web published citations at the NEURON website.