Wystrach A, Lagogiannis K, Webb B. (2016). Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae. eLife. 5 [PubMed]

See more from authors: Wystrach A · Lagogiannis K · Webb B

References and models cited by this paper

Ache BW, Young JM. (2005). Olfaction: diverse species, conserved principles. Neuron. 48 [PubMed]

Arbas EA, Willis MA. (1997). Active behavior and reflexive responses: another perspective on odor-modulated locomotion Insect Pheromone Research.

Asahina K, Louis M, Piccinotti S, Vosshall LB. (2009). A circuit supporting concentration-invariant odor perception in Drosophila. Journal of biology. 8 [PubMed]

Aso Y et al. (2014). Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife. 3 [PubMed]

Bellmann D et al. (2010). Optogenetically Induced Olfactory Stimulation in Drosophila Larvae Reveals the Neuronal Basis of Odor-Aversion behavior. Frontiers in behavioral neuroscience. 4 [PubMed]

Berni J. (2015). Genetic dissection of a regionally differentiated network for exploratory behavior in Drosophila larvae. Current biology : CB. 25 [PubMed]

Berni J, Pulver SR, Griffith LC, Bate M. (2012). Autonomous circuitry for substrate exploration in freely moving Drosophila larvae. Current biology : CB. 22 [PubMed]

Budick SA, Dickinson MH. (2006). Free-flight responses of Drosophila melanogaster to attractive odors. The Journal of experimental biology. 209 [PubMed]

Cardé RT, Willis MA. (2008). Navigational strategies used by insects to find distant, wind-borne sources of odor. Journal of chemical ecology. 34 [PubMed]

Cobb M. (1999). What and how do maggots smell? Biological Reviews of the Cambridge Philosophical Society. 74

Cobb M, Domain I. (2000). Olfactory coding in a simple system: adaptation in Drosophila larvae. Proceedings. Biological sciences. 267 [PubMed]

Cohen AH et al. (1992). Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends in neurosciences. 15 [PubMed]

Davies A, Louis M, Webb B. (2015). A Model of Drosophila Larva Chemotaxis. PLoS computational biology. 11 [PubMed]

De Palo G et al. (2013). Common dynamical features of sensory adaptation in photoreceptors and olfactory sensory neurons. Scientific reports. 3 [PubMed]

Diegelmann S, Klagges B, Michels B, Schleyer M, Gerber B. (2013). Maggot learning and Synapsin function. The Journal of experimental biology. 216 [PubMed]

Farkas SR, Shorey HH. (1972). Chemical trail-following by flying insects: a mechanism for orientation to a distant odor source. Science (New York, N.Y.). 178 [PubMed]

Fishilevich E et al. (2005). Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Current biology : CB. 15 [PubMed]

Gepner R, Mihovilovic Skanata M, Bernat NM, Kaplow M, Gershow M. (2015). Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration. eLife. 4 [PubMed]

Gerber B, Tanimoto H, Heisenberg M. (2004). An engram found? Evaluating the evidence from fruit flies. Current opinion in neurobiology. 14 [PubMed]

Gershow M et al. (2012). Controlling airborne cues to study small animal navigation. Nature methods. 9 [PubMed]

Gomez-Marin A, Duistermars BJ, Frye MA, Louis M. (2010). Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Frontiers in cellular neuroscience. 4 [PubMed]

Gomez-Marin A, Louis M. (2012). Active sensation during orientation behavior in the Drosophila larva: more sense than luck. Current opinion in neurobiology. 22 [PubMed]

Gomez-Marin A, Louis M. (2014). Multilevel control of run orientation in Drosophila larval chemotaxis. Frontiers in behavioral neuroscience. 8 [PubMed]

Gomez-Marin A, Stephens GJ, Louis M. (2011). Active sampling and decision making in Drosophila chemotaxis. Nature communications. 2 [PubMed]

Gong Z et al. (2010). Two pairs of neurons in the central brain control Drosophila innate light preference. Science (New York, N.Y.). 330 [PubMed]

Green CH, Burnet B, Connolly KJ. (1983). Organization and patterns of inter- and intraspecific variation in the behaviour of Drosophila larvae Animal Behaviour. 31

Hangartner W. (1969). Structure and variability of the individual odor trail in Solenopsis geminata Fabr. (Hymenoptera, Formicidae) Journal of Comparative Physiology. 62

Hernandez-Nunez L et al. (2015). Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics. eLife. 4 [PubMed]

Hughes CL, Thomas JB. (2007). A sensory feedback circuit coordinates muscle activity in Drosophila. Molecular and cellular neurosciences. 35 [PubMed]

Iino Y, Yoshida K. (2009). Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Izquierdo EJ, Lockery SR. (2010). Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Kane EA et al. (2013). Sensorimotor structure of Drosophila larva phototaxis. Proceedings of the National Academy of Sciences of the United States of America. 110 [PubMed]

Kanzaki R. (1996). Behavioral and neural basis of instinctive behavior in insects: Odor-source searching strategies without memory and learning Robotics and Autonomous Systems. 18

Kim AJ, Lazar AA, Slutskiy YB. (2011). System identification of Drosophila olfactory sensory neurons. Journal of computational neuroscience. 30 [PubMed]

Klein M et al. (2015). Sensory determinants of behavioral dynamics in Drosophila thermotaxis. Proceedings of the National Academy of Sciences of the United States of America. 112 [PubMed]

Kohsaka H, Okusawa S, Itakura Y, Fushiki A, Nose A. (2012). Development of larval motor circuits in Drosophila. Development, growth & differentiation. 54 [PubMed]

Krashes MJ et al. (2009). A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell. 139 [PubMed]

Kreher SA, Mathew D, Kim J, Carlson JR. (2008). Translation of sensory input into behavioral output via an olfactory system. Neuron. 59 [PubMed]

Lahiri S et al. (2011). Two alternating motor programs drive navigation in Drosophila larva. PloS one. 6 [PubMed]

Lansner A, Ekeberg O, Grillner S. (1997). Realistic modeling of burst generation and swimming in the lamprey .

Larkin A et al. (2010). Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae. Learning & memory (Cold Spring Harbor, N.Y.). 17 [PubMed]

Lemon WC et al. (2015). Whole-central nervous system functional imaging in larval Drosophila. Nature communications. 6 [PubMed]

Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI. (2005). The role of sensory network dynamics in generating a motor program. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Louis M, Huber T, Benton R, Sakmar TP, Vosshall LB. (2008). Bilateral olfactory sensory input enhances chemotaxis behavior. Nature neuroscience. 11 [PubMed]

Luo L et al. (2010). Navigational decision making in Drosophila thermotaxis. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Marder E, Calabrese RL. (1996). Principles of rhythmic motor pattern generation. Physiological reviews. 76 [PubMed]

Nagel KI, Wilson RI. (2011). Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nature neuroscience. 14 [PubMed]

Naka KI, Rushton WA. (1966). S-potentials from colour units in the retina of fish (Cyprinidae). The Journal of physiology. 185 [PubMed]

Nitsch V, Popp M. (2014). Emotions in robot psychology. Biological cybernetics. 108 [PubMed]

Ohashi S, Morimoto T, Suzuki Y, Miyakawa H, Aonishi T. (2014). A novel behavioral strategy, continuous biased running, during chemotaxis in Drosophila larvae. Neuroscience letters. 570 [PubMed]

Ohyama T et al. (2015). A multilevel multimodal circuit enhances action selection in Drosophila. Nature. 520 [PubMed]

Owald D et al. (2015). Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron. 86 [PubMed]

Rickert C, Kunz T, Harris KL, Whitington PM, Technau GM. (2011). Morphological characterization of the entire interneuron population reveals principles of neuromere organization in the ventral nerve cord of Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Sachse S, Beshel J. (2016). The good, the bad, and the hungry: how the central brain codes odor valence to facilitate food approach in Drosophila. Current opinion in neurobiology. 40 [PubMed]

Sawin EP, Harris LR, Campos AR, Sokolowski MB. (1994). Sensorimotor transformation from light reception to phototactic behavior inDrosophila larvae (Diptera: Drosophilidae) Journal of Insect Behavior. 7

Scherer S, Stocker RF, Gerber B. (2003). Olfactory learning in individually assayed Drosophila larvae. Learning & memory (Cold Spring Harbor, N.Y.). 10 [PubMed]

Schleyer M, Miura D, Tanimura T, Gerber B. (2015). Learning the specific quality of taste reinforcement in larval Drosophila. eLife. 4 [PubMed]

Schleyer M et al. (2015). The impact of odor-reward memory on chemotaxis in larval Drosophila. Learning & memory (Cold Spring Harbor, N.Y.). 22 [PubMed]

Schulze A et al. (2015). Dynamical feature extraction at the sensory periphery guides chemotaxis. eLife. 4 [PubMed]

Szigeti B, Deogade A, Webb B. (2015). Searching for motifs in the behaviour of larval Drosophila melanogaster and Caenorhabditis elegans reveals continuity between behavioural states. Journal of the Royal Society, Interface. 12 [PubMed]

Vermeij GJ. (1973). Adaptation, versatility, and evolution Systematic Zoology. 22

Vogelstein JT et al. (2014). Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science (New York, N.Y.). 344 [PubMed]

Wang Y, Pu Y, Shen P. (2013). Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae. Cell reports. 3 [PubMed]

Webb B, Wystrach A, Lagogiannis K. (2016). Article’s resource repository. GitHub. https: // github.com / InsectRobotics / larvaTaxisOscillator.

Willis M, Arbas E. (1997). Centrally patterned behavior generates sensory input for adaptive control Neurons, Networks, and Motor Behavior.

Wilson HR. (1999). Spikes, Decisions, Actions: Dynamic Foundations of Neuroscience. 1

Wolfram_Research Inc. (2015). Mathematica 10.1. https: // www.wolfram.com.

Xu X, Li Z, Cai L, Calve S, Neu CP. (2016). Mapping the Nonreciprocal Micromechanics of Individual Cells and the Surrounding Matrix Within Living Tissues. Scientific reports. 6 [PubMed]

Yang TD et al. (2011). Zigzag turning preference of freely crawling cells. PloS one. 6 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.