Anderson JS, Carandini M, Ferster D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. Journal of neurophysiology. 84 [PubMed]
Boahen K. (1998). Communicating neuronal ensembles between neuromorphic chips Neuromorphic systems engineering.
Boahen K, Arthur J. (2004). Recurrently connected silicon neurons with active dendrites for one-shot learning IEEE Intl Joint Conf Neural Networks. 3
Boahen K, Arthur J. (2006). Learning in silicon: Timing is everything Advances in neural information processing systems. 18
Boahen K, Hynna K. (2006). Space-rate coding in an adaptive silicon neuron. Neural Netw. 14
Boahen K, Hynna KM. (2006). Neuronal ion-channel dynamics in silicon IEEE Intl Symposium on Circuits and Systems.
Boahen K, Merolla P. (2004). A recurrent model of orientation maps with simple and complex cells Advances in neural information processing systems. 16
Boahen KA. (1997). Retinomorphic vision systems: Reverse engineering the vertebrate retina Unpublished doctoral dissertation, California Institute of Technology.
Boegerhausen M, Suter P, Liu SC. (2003). Modeling short-term synaptic depression in silicon. Neural computation. 15 [PubMed]
Borgstrom T, Ismail M, Bibyk S. (1990). Programmable current-mode neural network for implementation in analogue MOS VLSI IEEE Proc. 137
Carandini M, Heeger DJ, Movshon JA. (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Chance FS, Abbott LF, Reyes AD. (2002). Gain modulation from background synaptic input. Neuron. 35 [PubMed]
Chance FS, Nelson SB, Abbott LF. (1998). Synaptic depression and the temporal response characteristics of V1 cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]
Chicca E. (2006). A neuromorphic VLSI system for modeling spike-based cooperative competitive neural networks Unpublished doctoral dissertation, ETH Zurich.
Chicca E et al. (2003). A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory. IEEE transactions on neural networks. 14 [PubMed]
Douglas R, Indiveri G, Chicca E. (2003). An adaptive silicon synapse IEEE International Symposium on Circuits and Systems.
Douglas R, Indiveri G, Liu SC, Kramer J, Delbruck T. (2002). Analog VLSI: Circuits and principles.
Douglas R et al. (2006). Orientation-selective aVLSI spiking neurons. Neural Netw. 14
Fusi S, Annunziato M, Badoni D, Salamon A, Amit DJ. (2000). Spike-driven synaptic plasticity: theory, simulation, VLSI implementation. Neural computation. 12 [PubMed]
Fusi S, Indiveri G, Mitra S. (2006). A VLSI spike-driven dynamic synapse which learns only when necessary IEEE Int Symposium On Circuits And Systems.
Gütig R, Sompolinsky H. (2006). The tempotron: a neuron that learns spike timing-based decisions. Nature neuroscience. 9 [PubMed]
Hasler P, Gordon C, Farquhar E. (2004). A family of floating-gate adapting synapses based upon transistor channel models IEEE Intl Symposium on Circuits and Systems. 1
Hertz J, Krogh A, Palmer RG. (1991). Introduction to the Theory of Neural Computation..
Horiuchi T, Hynna K. (2001). A VLSI-based model of azimuthal echolocation in the big brown bat Autonomous Robots. 11
Horiuchi T, Shi R. (2004). A summating, exponentially-decaying CMOS synapse for spiking neural systems Advances in neural information processing systems. 16
Horiuchi T, Shi R. (2004). A VLSI model of the bat lateral superior olive for azimuthal echolocation. Proc Intl Symposium On Circuits and Systems. 4
Indiveri G. (2000). Modeling selective attention using a neuromorphic analog VLSI device. Neural computation. 12 [PubMed]
Indiveri G, Bartolozzi C. (2006). Silicon synaptic homeostasis Brain Inspired Cognitive Systems.
Indiveri G, Chicca E, Douglas R. (2006). A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE transactions on neural networks. 17 [PubMed]
Kandel ER, Jessell TM, Schwartz JH. (2000). Principles of neural science (4th ed).
Koch C. (1999). Biophysics Of Computation: Information Processing in Single Neurons.
Koch C, Poggio T, Torre V. (1983). Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proceedings of the National Academy of Sciences of the United States of America. 80 [PubMed]
Lazzaro JP. (1994). Low-power silicon axons, neurons, and synapses Silicon implementation of pulse coded neural networks.
Mead C. (1989). Analog VLSI and neural systems..
Morris RG, Davis S, Butcher SP. (1990). Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 329 [PubMed]
Murray A, Bofill A, Thompson D. (2002). Circuits for VLSI implementation of temporally asymmetric Hebbian learning Advances in neural information processing systems. 14
Murray AF. (1998). Pulse-based computation in VLSI neural networks Pulsed neural networks.
Northmore DPM, Elias JG. (1998). Building silicon nervous systems with dendritic tree neuromorphs Pulsed neural networks.
Rasche C, Hahnloser RH. (2001). Silicon synaptic depression. Biological cybernetics. 84 [PubMed]
Satyanarayana S, Tsividis Y, Graf H. (1992). A reconfigurable VLSI neural network IEEE J Solid-State Circuits. 27
Sejnowski TJ, Destexhe A, Mainen ZF. (1998). Kinetic models of synaptic transmission Methods In Neuronal Modeling.
Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 391 [PubMed]
Wang XJ. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]