Bartlett P, Freund Y, Schapire RE, Lee WS. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods Ann Stat. 26
Bartlett PL, Baxter J, Mason L, Frean M. (1999). Boosting algorithms as gradient descent Advances in neural information processing systems. 11
Breiman L. (1996). Bagging predictors Mach Learn. 24
Breiman L. (1997). Arcing the edge Tech. Rep. No. 486.
Breiman L. (1999). Prediction games and arcing algorithms Neural computation. 11 [PubMed]
Breiman L. (2001). Random forests Mach Learn. 45
Brezger A, Kneib T, Lang S. (2005). Bayes X: Analyzing Bayesian structured additive regression models J Stat Software. 14
Brezger A, Lang S. (2006). Generalized structured additive regression based on Bayesian P-splines Computational Statistics And Data Anal. 50
Brillinger DR. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biological cybernetics. 59 [PubMed]
Brockwell AE, Rojas AL, Kass RE. (2004). Recursive bayesian decoding of motor cortical signals by particle filtering. Journal of neurophysiology. 91 [PubMed]
Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural computation. 14 [PubMed]
Chen D, Fetz EE. (2005). Characteristic membrane potential trajectories in primate sensorimotor cortex neurons recorded in vivo. Journal of neurophysiology. 94 [PubMed]
Chornoboy ES, Schramm LP, Karr AF. (1988). Maximum likelihood identification of neural point process systems. Biological cybernetics. 59 [PubMed]
Copas JB. (1983). Regression, prediction, and shrinkage (with discussion) J Roy Stat Soc B. 45
Daley D, Vere-jones D. (2003). An introduction to the theory of point process (2nd ed).
Donoghue JP, Bienenstock E, Gao Y, Black MJ, Shoham S. (2001). Probabilistic inference of hand motion from neural activity in motor cortex Advances in neural information processing systems. 14
Donoghue JP, Truccolo W, Vargas C, Philip B. (2005). M1-5d Statistical interdependencies via dual multi-electrode array recordings Soc Neurosci Abstr 981.13.
Doucet A, de_Freitas N, Gordon N. (2001). Sequential Monte Carlo methods in practice.
Eden UT, Frank LM, Barbieri R, Solo V, Brown EN. (2004). Dynamic analysis of neural encoding by point process adaptive filtering. Neural computation. 16 [PubMed]
Efron B, Tibshirani R, Hastie T, Johnstone I. (2004). Least angle regression Ann Stat. 32
Eilers PHC, Marx BD. (1996). Flexible smoothing with B-splines and penalties Stat Sci. 11
Frank LM, Brown EN, Eden UT, Barbieri R. (2003). Likelihood methods for neural data analysis Computational neuroscience: A comprehensive approach .
Frank LM, Eden UT, Solo V, Wilson MA, Brown EN. (2002). Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: an adaptive filtering approach. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Freund Y, Schapire R. (1995). A decision-theoretic generalization of on-line learning and an application to boosting Second European Conference On Computational Learning Theory.
Friedman J. (2001). Greedy function approximation: A gradient boosting machine Ann Stat. 29
Friedman JH. (1991). Multivariate Adaptive Regression Splines Ann Stat. 19
Friedman JH. (1999). Stochastic gradient boosting Tech Rep Stanford University Statistics Department.
Friedman JH. (2002). Stochastic gradient boosting Computational Statistics And Data Analysis. 38
Friedman JH, Breiman L, Stone CJ, Olshen JR. (1984). Classification and regression trees.
Gamerman D. (1997). Sampling fromthe posterior distribution in generalized linear mixed models Statistics And Computing. 7
Girsanov IV. (1960). On transforming a certain class of stochastic processes by absolutely continuous substitution of measures Theory Prob And Its Appl. 5
Hatsopoulos N, Joshi J, O'Leary JG. (2004). Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. Journal of neurophysiology. 92 [PubMed]
Kass RE, Genovese CR, Dimatteo I. (2001). Bayesian curve-fitting with free knotsplines Biometrika. 88
Kass RE, Ventura V. (2001). A spike-train probability model. Neural computation. 13 [PubMed]
Kaufman CG, Ventura V, Kass RE. (2005). Spline-based non-parametric regression for periodic functions and its application to directional tuning of neurons. Statistics in medicine. 24 [PubMed]
Kotz S, Johnson A. (1970). Distributions in Statistics: Continuous univariate distributions.
Lafferty J, Lebanon G. (2002). Boosting and maximum likelihood for exponential models Advances in neural information processing systems. 14
Lugosi G, Vayatis N. (2004). On the Bayes-risk consistency of regularized boosting methods Ann Stat. 32
Okatan M, Wilson MA, Brown EN. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural computation. 17 [PubMed]
Paninski L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network (Bristol, England). 15 [PubMed]
Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP. (2004). Spatiotemporal tuning of motor cortical neurons for hand position and velocity. Journal of neurophysiology. 91 [PubMed]
Papangelou F. (1972). Integrability of expected increments of point processes anda related change of scale Trans Am Math Soc. 165
Spiegelhalter D, Thomas A, Best N, Lunn D. (2003). WinBUGS user Manual (Version 1.4).
Tibshirani R, Hastie T, Friedman J. (2000). Additive logistic regression: A statictical view of boosting Ann Stat. 28
Tibshirani R, Hastie T, Friedman J. (2001). The elements of statistical learning.
Tibshirani R, Zhu J, Hastie T, Friedman J, Rosset S. (2004). Discussion Ann Stat. 32
Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of neurophysiology. 93 [PubMed]
Vapnik V. (1998). Statistical Learning Theory.
Wilson MA, Quirk MC, Frank LM, Brown EN, Barbieri R. (2002). Construction and analysis of non-gaussian place field models of neural spiking activity Neurocomputing. 44-46
Wood SN. (2004). Stable and efficient multiple smoothing parameter estimation for generalized additive models J Am Stat Assoc. 99
Zhang T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization Ann Stat. 32
Zhu J, Hastie T, Rosset S. (2004). Boosting as a regularized path to a maximum margin classifier J Mach Learn Res. 5
McFarland JM, Cui Y, Butts DA. (2013). Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS computational biology. 9 [PubMed]