Ancona N, Stramaglia S. (2006). An invariance property of predictors in kernel-induced hypothesis spaces. Neural computation. 18 [PubMed]
Basak J. (2006). Online adaptive decision trees: pattern classification and function approximation. Neural computation. 18 [PubMed]
Bo L, Wang L, Jiao L. (2006). Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation. Neural computation. 18 [PubMed]
Bo L, Wang L, Jiao L. (2007). Recursive Finite Newton Algorithm for Support Vector Regression in the Primal Neural Comput. 19
Chang MW, Lin CJ. (2005). Leave-One-Out Bounds for Support Vector Regression Model Selection Neural Comput. 17
Chapelle O. (2007). Training a support vector machine in the primal. Neural computation. 19 [PubMed]
Crammer K, Singer Y. (2005). Online ranking by projecting. Neural computation. 17 [PubMed]
Cserpán D et al. (2017). Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings. eLife. 6 [PubMed]
Fdez Galán R, Sachse S, Galizia CG, Herz AV. (2004). Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural computation. 16 [PubMed]
Glasmachers T, Igel C. (2005). Gradient-based adaptation of general gaussian kernels. Neural computation. 17 [PubMed]
Graf ABA, Wichmann FA, Bulthoff HH, Scholkopf B. (2005). Classification of Faces in Man and Machine Neural Comput. 18
Haeusler S, Maass W. (2007). A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]
Hochreiter S, Obermayer K. (2006). Support vector machines for dyadic data. Neural computation. 18 [PubMed]
Ikeda K. (2004). An asymptotic statistical theory of polynomial kernel methods Neural Comput. 16
Ikeda K, Murata N. (2005). Geometrical properties of nu support vector machines with different norms. Neural computation. 17 [PubMed]
Kanamori T, Takenouchi T, Eguchi S, Murata N. (2007). Robust loss functions for boosting. Neural computation. 19 [PubMed]
Knebel T, Hochreiter S, Obermayer K. (2008). An SMO algorithm for the potential support vector machine. Neural computation. 20 [PubMed]
Legenstein R, Maass W. (2008). On the classification capability of sign-constrained perceptrons. Neural computation. 20 [PubMed]
Lin TC, Yu PT. (2004). Adaptive two-pass median filter based on support vector machines for image restoration. Neural computation. 16 [PubMed]
Markram H, Maass W, Haeusler S. (2003). Perspectives of the high dimensional dynamics of neural microcircuits from the point of view of low dimensional readouts. Complexity (special issue on Complex Adaptive Systems). 8(4)
Micchelli CA, Pontil M. (2005). On learning vector-valued functions. Neural computation. 17 [PubMed]
Nemenman I. (2005). Fluctuation-dissipation theorem and models of learning. Neural computation. 17 [PubMed]
Nitta T. (2004). Orthogonality of decision boundaries in complex-valued neural networks. Neural computation. 16 [PubMed]
Pérez-Cruz F, Bousoño-Calzón C, Artés-Rodríguez A. (2005). Convergence of the IRWLS Procedure to the Support Vector Machine Solution. Neural computation. 17 [PubMed]
Rosasco L, De Vito E, Caponnetto A, Piana M, Verri A. (2004). Are loss functions all the same? Neural computation. 16 [PubMed]
Sha F, Lin Y, Saul LK, Lee DD. (2007). Multiplicative updates for nonnegative quadratic programming. Neural computation. 19 [PubMed]
Song Q. (2005). A robust information clustering algorithm. Neural computation. 17 [PubMed]
Sugiyama M, Kawanabe M, Müller KR. (2004). Trading variance reduction with unbiasedness: the regularized subspace information criterion for robust model selection in kernel regression. Neural computation. 16 [PubMed]
Thies T, Weber F. (2004). Optimal reduced-set vectors for support vector machines with a quadratic kernel. Neural computation. 16 [PubMed]
Truccolo W, Donoghue JP. (2007). Nonparametric modeling of neural point processes via stochastic gradient boosting regression. Neural computation. 19 [PubMed]
Tsuda K, Akaho S, Kawanabe M, Müller KR. (2004). Asymptotic properties of the Fisher kernel. Neural computation. 16 [PubMed]
Viéville T, Crahay S. (2004). Using an Hebbian learning rule for multi-class SVM classifiers. Journal of computational neuroscience. 17 [PubMed]
Washizawa Y, Yamashita Y. (2006). Kernel projection classifiers with suppressing features of other classes. Neural Comput. 18
Wu Q, Zhou DX. (2005). SVM Soft Margin Classifiers: Linear Programming versus Quadratic Programming Neural Comput. 17
Zhong P, Fukushima M. (2007). Second-order cone programming formulations for robust multiclass classification. Neural computation. 19 [PubMed]