Bartlett P, Williamson R, Scholkopf B, Smola B. (1999). Shrinking the tube: A new support vector regression algorithm Advances in neural information processing systems. 11
Groetsch CW. (1993). Inverse problems in the mathematical sciences.
Israel AB, Greville TNE. (1974). Generalized inverse: Theory and applications.
Jordan MI, Bach FR. (2002). Kernel independent component analysis J Mach Learn Res. 3
Luenberger DG. (1969). Optimization by vector space methods.
Muller KR, Ratsch G, Onoda T. (2001). Soft margins for AdaBoost Mach Learn. 42
Murase H, Maeda E. (1999). Multi-category classification by kernel based nonlinear subspace method IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 2
Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B. (2001). An introduction to kernel-based learning algorithms. IEEE transactions on neural networks. 12 [PubMed]
Oja E. (1983). Subspace methods of pattern recognition.
Onoda T, Murata H. (2001). Applying kernel based subspace classification to a non-intrusive monitoring for household electoric appliances International Conference on Artificial Neural Networks (ICANN).
Ratsch G. (2001). Robust boosting via convex optimization Unpublished doctoral dissertation.
Rohde CA. (1965). Generalized inverses of partitioned matrices J Soc Indust Appl Math. 13
Scholkopf B, Muller KR, Mika S, Ratsch G, Weston J. (1999). Fisher discriminant analysis with kernels Neural networks for signal processing IX.
Scholkopf B et al. (2000). Invariant feature extraction and classification in kernel spaces Advances in neural information processing systems. 12
Scholkopf B, Smola A, Muller KR. (1998). Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10
Schölkopf B et al. (1999). Input space versus feature space in kernel-based methods. IEEE transactions on neural networks. 10 [PubMed]
Tikhonov AN, Arsenin VY. (1977). Solution of ill-posed problems.
Tsuda K. (1999). Subspace classifier in the Hilbert space Pattern Recognition Letters. 20
Vapnik V. (1998). Statistical Learning Theory.
Vapnik V, Cortes C. (1995). Support-vector networks Mach Learn. 20
Washizawa Y, Yamashita Y. (2004). Kernel sample space projection classifier for pattern recognition 17th International Conference On Pattern Recognition. 2
Watanabe S, Pakvasa N. (1973). Subspace method in pattern recognition Proc. 1st Int. J. Conf on Pattern Recognition.
Yamashita Y, Ogawa H. (1996). Relative Karhunen-Loeve transform IEEE Transactions On Signal Processing. 44