Bennett KP, Bi J. (2003). A geometric approach to support vector regression Neurocomputing. 55
Bennett KP, Bredensteiner EJ. (2000). Duality and geometry in SVM classifiers Proc. Intl Conf. Machine Learning.
Herbrich R. (2002). Learning kernel classifiers: Theory and algorithms.
Ikeda K. (2004). An asymptotic statistical theory of polynomial kernel methods Neural Comput. 16
Ikeda K. (2004). Geometry and learning curves of kernel methods with polynomial kernels Systems And Computers In Japan. 35
Ikeda K, Amari S. (1996). Geometry of admissible parameter region in neural learning IEICE Trans. Fundamentals. E79
Ikeda K, Aoishi T. (2004). Effects of soft margins on learning curves of support vector machines Proc. Brain Inspired Cognitive Systems.
Ikeda K, Aoishi T. (2005). An asymptotic statistical analysis of support vector machines with soft margins Neural Netw. 18
Mangasarian OL. (1999). Arbitrary-norm separating plane Operations Research Letters. 24
Murata N, Pedroso JP. (2001). Support vector machines with different norms: Motivation, formulations and results Pattern Recognition Letters. 22
Scholkopf B, Smola A, Muller KR. (1999). Kernel principal component analysis Advances in kernel methods-Support vector learning.
Scholkopf B, Smola AJ, Bartlett PL, Schuurmans D. (2000). Advances in large margin classifiers.
Scholkopf B, Smola AJ, Williamson RC, Bartlett PL. (2000). New support vector algorithms Neural computation. 12 [PubMed]
Shawe-taylor J, Cristianini N. (2000). An introduction to support vector machines.
Vapnik V. (1995). The Nature of Statistical Learning Theory.
Vapnik V. (1998). Statistical Learning Theory.
Vapnik V, Cortes C. (1995). Support-vector networks Mach Learn. 20