Amit Y, Mascaro M. (2003). An integrated network for invariant visual detection and recognition. Vision research. 43 [PubMed]
Amit Y, Trouve A. (2005). POP: Patchwork of parts models for object recognition Unpublished technical report, Available online from http:--galton.uchicago.edu-amit-Papers-pop.pdf.
Beymer D, Poggio T. (1996). Image representations for visual learning. Science (New York, N.Y.). 272 [PubMed]
Bridgeman B, van_der_Heijden AHC, Velichkovsky B. (1994). Visual stability and saccadic eye movements Behav Brain Sci. 17
Connor CE, Gallant JL, Preddie DC, Van Essen DC. (1996). Responses in area V4 depend on the spatial relationship between stimulus and attention. Journal of neurophysiology. 75 [PubMed]
Crandall D, Felzenszwalb P, Huttenlocher D. (2005). Spatial priors for part based recognition using statistical models Proc Intl Conf Computer Vision and Pattern.
Dayan P, Hinton GE, Neal RM, Zemel RS. (1995). The Helmholtz machine. Neural computation. 7 [PubMed]
Dayan P, Pouget A, Zemel RS. (2000). Computation with population codes Nature Rev Neurosci. 1
Dayan P, Riesenhuber M. (1996). Neural models for part-whole hierarchies Advances in neural information processing systems. 9
De_Lathauwer L. (1997). Signal processing based on multilinear algebra Unpublished doctoral dissertation, Katholieke Universitiet Leuven.
Dempster AP, Laird NM, Rubin DB. (1977). Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B. 39
Deneve S, Pouget A. (2003). Basis functions for object-centered representations. Neuron. 37 [PubMed]
Dolan CP. (1989). Tensor manipulation networks: Connectionist and symbolic approaches to comprehension, learning and planning Tech Rep UCLA-AI-89-06.
Edelman S. (1999). Representation and recognition in vision.
Fei-fei L, Fergus R, Perona P. (2003). A Bayesian approach to unsupervised one-shot learning of object categories Paper Presented At The International Conference On Computer Vision.
Fergus R, Perona P, Zisserman A. (2003). Object class recognition by unsupervised scale-invariant learning Proc of the IEEE Conf on Computer Vision and Pattern Recognition.
Fischler MA, Elschlager RA. (1973). The representation and matching of pictorial structures IEEE Trans Computers. 22
Gayler RW. (1998). Multiplicative binding, representation operators and analogy Advances in analogy research: Integration of theory and data from the cognitive, computational, and neural sciences.
Grenander U. (1981). Lectures in pattern theory I, II and III: Pattern analysis, pattern synthesis and regular structures.
Grimes DB, Rao RP. (2005). Bilinear sparse coding for invariant vision. Neural computation. 17 [PubMed]
Hinton GE. (1989). Learning distributed representations of concepts Parallel distributed processing: Implications for psychology and neurobiology.
Hinton GE. (1990). Mapping part-whole hierarchies into connectionist networks Art Intell. 46
Hinton GE. (1991). Connectionist symbol processing.
Hinton GE, Dayan P, Revow M. (1997). Modeling the manifolds of images of handwritten digits. IEEE transactions on neural networks. 8 [PubMed]
Hinton GE, Ghahramani Z. (1997). Generative models for discovering sparse distributed representations. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 352 [PubMed]
Hinton GE, Paccanaro A. (2001). Learning distributed representation of concepts using linear relational embedding IEEE Trans Knowledge and Data Engineering. 13
Hinton GE, Williams CKI, Revow M. (1996). Using generative models for handwritten digit recognition IEEE Trans Pattern Analysis and Machine Intelligence. 18
Kanerva P. (1996). Binary spatter-coding of ordered K-tuples Proc ICANN.
Koenderink JJ, Van_doorn AJ. (1997). The generic bilinear calibration estimation problem Intl J Computer Vision. 23
Kolda TG. (2001). Orthogonal tensor decompositions SIAM J Matrix Anal Appl. 23
Koller D, Pfeffer A. (1998). Probabilistic frame-based systems Proc 15th Natl Conf Artif Intell.
Lewicki MS, Olshausen BA, Rao RPN. (2002). Probabilistic models of the brain: Perception and neural function.
Liebe B, Schiele B. (2003). Interleaved object categorization and segmentation British Machine Vision Conference.
Liebe B, Schiele B. (2004). Scale invariant object categorization using a scale adaptive mean-shift search DAGM Ann Pattern Recognition Symposium.
Linsker R. (1988). Self-organization in a perceptual network Computer. 2
Mackay DM. (1956). The epistemological problem for automata Automata Studies.
Mjolsness E. (1990). Bayesian inference on visual grammars by neural nets that optimize Tech Rep YALEU-DCS-TR-854 Computer Science Department Yale University.
Mumford D. (1994). Neuronal architectures for pattern-theoretic problems Large scale neuronal theories of the brain.
Neisser U. (1967). Cognitive Psychology.
Olshausen BA, Anderson CH, Van Essen DC. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]
Olshausen BA, Field DJ. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 381 [PubMed]
Pentland A, Turk M. (1991). Eigen faces for recognition J Cogn Neurosci. 3
Perona P, Burl MC, Leung TK. (1995). Face localization via shape statistics Proc Intl Workshop Automatic Face and Gesture Recognition.
Plate TA. (1995). Holographic reduced representations. IEEE transactions on neural networks. 6 [PubMed]
Plate TA. (2003). Holographic reduced representations.
Poggio T. (1990). A theory of how the brain might work. Cold Spring Harbor symposia on quantitative biology. 55 [PubMed]
Poggio T, Vetter T. (1997). Linear object classes and image synthesis froma single example image IEEE Trans Pattern Analysis and Machine Intelligence. 19
Pollack JB. (1990). Recursive distributed representations Artif Intell. 46
Pouget A, Sejnowski TJ. (1997). Spatial transformations in the parietal cortex using basis functions. Journal of cognitive neuroscience. 9 [PubMed]
Rachkovskij DA, Kussul EM. (2001). Binding and normalization of binary sparse distributed representations by context-dependent thinning Neural Comput. 13
Riesenhuber M, Poggio T. (1999). Hierarchical models of object recognition in cortex. Nature neuroscience. 2 [PubMed]
Riesenhuber M, Sinha P, Jarudi I, Gilad S. (2004). Face processing in humans is compatible with a simple shape-based model of vision. Proc Biol Sci. 271 Suppl 6
Russell S, Milch B, Marthi B. (2004). BLOG: Relational modeling with unknown objects Proc ICML Workshop on Statistical Relational Learning.
Salinas E, Abbott LF. (1997). Invariant visual responses from attentional gain fields. Journal of neurophysiology. 77 [PubMed]
Schiele B, Crowley JL. (1996). Probabilistic object recognition using multidimensional receptive field histograms Intl Conf Pattern Recognition.
Schiele B, Crowley JL. (2000). Recognition without correspondence using multidimensional receptive field histograms Intl J Computer Vision. 36
Schneiderman H, Kanade T. (2004). Object detection using the statistics of parts Intl J Computer Vision. 56
Smolensky P. (1990). Tensor product variable binding and the representation of symbolic structures in connectionist systems Artif Intell. 46
Sperduti A. (1994). Labeling RAAM Connection Science. 6
Tenenbaum JB, Freeman WT. (2000). Separating style and content with bilinear models. Neural computation. 12 [PubMed]
Tucker LR. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika. 31 [PubMed]
Vandewalle J, De_Lathauwer L. (2004). Dimensionality reduction in higher-order signal processing and rank-(R1, R2, . . . , RN) reduction in multilinear algebra Linear Algebra Applications. 391
Vasilescu MAO, Terzopoulos D. (2002). Multilinear Analysis of Image Ensembles: Tensor Faces Proc European Conf Comput Vis.
Vasilescu MAO, Terzopoulos D. (2003). Multilinear subspace analysis for image ensembles Proc Computer Vision and Pattern Recognition Conf. 2
Vasilescu MAO, Terzopoulos D. (2005). Multilinear independent components analysis Proc Computer Vision and Pattern Recognition Conf. 2
Vetter T, Blanz V. (1999). A morphable model for the synthesis of 3D faces Siggraph99.
Weber M, Perona P, Burl M. (1998). A probabilistic approach to object recognition using local photometry and global geometry.
Willsky AS, Freeman WT, Sudderth EB, Torralba A. (2005). Learning hierarchical models of scenes, objects and parts Intl Conf Comput Vis. 2
Zemel RS, Hinton GE. (1994). Autoencoders, minimum description length, and Helmholtz free energy Advances in neural information processing systems. 6
von der Malsburg C. (1988). Pattern recognition by labelled graph matching Neural Netw. 1