ATTNEAVE F. (1954). Some informational aspects of visual perception. Psychological review. 61 [PubMed]
Anderson CH, Van Essen DC. (1987). Shifter circuits: a computational strategy for dynamic aspects of visual processing. Proceedings of the National Academy of Sciences of the United States of America. 84 [PubMed]
BARLOW HB. (1961). Possible principles underlying the transformations of sensory messages Sensory Communication.
Bell AJ, Sejnowski TJ. (1997). The "independent components" of natural scenes are edge filters. Vision research. 37 [PubMed]
Besag J. (1986). On the Statistical Analysis of Dirty Pictures J Roy Stat Soc B. 48
Foldiak P. (1991). Learning invariance from transformation sequences Neural Comput. 3
Hinton GE. (1987). Learning translation invariant recognition in a massively parallel network PARLE: Parallel architectures and languages Europe .
Hinton GE, Ghahramani Z. (1997). Generative models for discovering sparse distributed representations. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 352 [PubMed]
Ito T, Fukushima K, Miyake S. (1983). Neocognitron: A neural network model for a mechanism of visual pattern recognition IEEE Trans Systems, Man, and Cybernetics. 13
Lecun Y et al. (1989). Backpropagation applied to handwritten zip code recognition Neural Comput. 1
Lewicki MS, Sejnowski TJ. (2000). Learning overcomplete representations. Neural computation. 12 [PubMed]
Olshausen BA, Field DJ. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 381 [PubMed]
Rao RP, Ballard DH. (1998). Development of localized oriented receptive fields by learning a translation-invariant code for natural images. Network (Bristol, England). 9 [PubMed]
Rao RP, Ballard DH. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature neuroscience. 2 [PubMed]
Rao RPN, Grimes DB. (2003). A bilinear model for sparse coding Advances in neural information processing systems. 15
Roweis ST, Saul LK. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science (New York, N.Y.). 290 [PubMed]
Ruderman DL, Rao RPN. (1999). Learning Lie groups for invariant visual perception Advances in neural information processing systems. 11
Schwartz O, Simoncelli EP. (2001). Natural signal statistics and sensory gain control. Nature neuroscience. 4 [PubMed]
Tenenbaum JB, Freeman WT. (2000). Separating style and content with bilinear models. Neural computation. 12 [PubMed]
Ungerleider LG, Mishkin M. (1982). Two cortical visual systems Analysis of Visual Behavior.
Wiskott L. (2004). How does our visual system achieve shift and size invariance? Problems in systems neuroscience.
Wiskott L, Sejnowski TJ. (2002). Slow feature analysis: unsupervised learning of invariances. Neural computation. 14 [PubMed]
Young MP, Foldiak P. (1995). Sparse Coding in the Primate Cortex. The Handbook of Brain Theory and Neural Networks.
Dayan P. (2006). Images, frames, and connectionist hierarchies. Neural computation. 18 [PubMed]
Hasler S, Wersing H, Körner E. (2007). Combining reconstruction and discrimination with class-specific sparse coding. Neural computation. 19 [PubMed]
Miao X, Rao RP. (2007). Learning the Lie groups of visual invariance. Neural computation. 19 [PubMed]
Olshausen BA, Field DJ. (2005). How close are we to understanding v1? Neural computation. 17 [PubMed]
Turner R, Sahani M. (2007). A maximum-likelihood interpretation for slow feature analysis. Neural computation. 19 [PubMed]
Weber C, Wermter S. (2006/7). A self-organizing map of sigma-pi units Neurocomputing. 70(13-15)