Carter AG, Regehr WG. (2002). Quantal events shape cerebellar interneuron firing. Nature neuroscience. 5 [PubMed]

See more from authors: Carter AG · Regehr WG

References and models cited by this paper
References and models that cite this paper

Cathala L, Brickley S, Cull-Candy S, Farrant M. (2003). Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]

Maex R, De Schutter E. (2003). Resonant synchronization in heterogeneous networks of inhibitory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Mittmann W, Koch U, Häusser M. (2005). Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. The Journal of physiology. 563 [PubMed]

Molineux ML, Fernandez FR, Mehaffey WH, Turner RW. (2005). A-type and T-type currents interact to produce a novel spike latency-voltage relationship in cerebellar stellate cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Parisien C, Anderson CH, Eliasmith C. (2008). Solving the problem of negative synaptic weights in cortical models. Neural computation. 20 [PubMed]

Santamaria F, Tripp PG, Bower JM. (2007). Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. Journal of neurophysiology. 97 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.