Blight AR. (1985). Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath. Neuroscience. 15 [PubMed]

See more from authors: Blight AR

References and models cited by this paper
References and models that cite this paper

Devaux J, Gow A. (2008). Tight junctions potentiate the insulative properties of small CNS myelinated axons. The Journal of cell biology. 183 [PubMed]

García-Grajales JA, Rucabado G, García-Dopico A, Peña JM, Jérusalem A. (2015). Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading. PloS one. 10 [PubMed]

Gow A, Devaux J. (2008). A model of tight junction function in central nervous system myelinated axons. Neuron glia biology. 4 [PubMed]

Ibañez S, Sengupta N, Luebke JI, Wimmer K, Weaver CM. (2024). Myelin dystrophy impairs signal transmission and working memory in a multiscale model of the aging prefrontal cortex. eLife. 12 [PubMed]

McIntyre CC, Richardson AG, Grill WM. (2002). Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. Journal of neurophysiology. 87 [PubMed]

Mosekilde E, Brazhe AR, Maksimov GV, Sosnovtseva O. (2010). Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance Journal of Interface Focus. 1(1)

Shrager P. (1993). Axonal coding of action potentials in demyelinated nerve fibers. Brain research. 619 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.