Carrillo RR, Ros E, Tolu S, Nieus T, D'Angelo E. (2008). Event-driven simulation of cerebellar granule cells. Bio Systems. 94 [PubMed]
Domanski APF, Booker SA, Wyllie DJA, Isaac JTR, Kind PC. (2019). Cellular and synaptic phenotypes lead to disrupted information processing in Fmr1-KO mouse layer 4 barrel cortex. Nature communications. 10 [PubMed]
Jolivet R et al. (2008). A benchmark test for a quantitative assessment of simple neuron models. Journal of neuroscience methods. 169 [PubMed]
Khalil R, Moftah MZ, Moustafa AA. (2017). The effects of dynamical synapses on firing rate activity: a spiking neural network model. The European journal of neuroscience. 46 [PubMed]
Kretzberg J, Warzecha AK, Egelhaaf M. (2001). Neural coding with graded membrane potential changes and spikes. Journal of computational neuroscience. 11 [PubMed]
Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. (2019). Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS computational biology. 15 [PubMed]
Matsubara T, Torikai H. (2016). An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities. IEEE transactions on neural networks and learning systems. 27 [PubMed]
Ros E, Carrillo R, Ortigosa EM, Barbour B, Agís R. (2006). Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural computation. 18 [PubMed]
Van Dijck G et al. (2012). Enhancing the yield of high-density electrode arrays through automated electrode selection. International journal of neural systems. 22 [PubMed]
Yu Q, Tang H, Hu J, Tan KC. (2017). Precise-Spike-Driven Synaptic Plasticity for Hetero Association of Spatiotemporal Spike Patterns Neuromorphic Cognitive Systems: A Learning and Memory Centered Approach.
Zeldenrust F, Chameau PJ, Wadman WJ. (2013). Reliability of spike and burst firing in thalamocortical relay cells. Journal of computational neuroscience. 35 [PubMed]