Altoè A, Pulkki V, Verhulst S. (2018). The effects of the activation of the inner-hair-cell basolateral K+ channels on auditory nerve responses. Hearing research. 364 [PubMed]
Colburn HS, Carney LH, Heinz MG, Evilsizer ME, Gilkey RH. (2002). Auditory Phase Opponency: A Temporal Model for Masked Detection at Low Frequencies Acta Acustica united with Acustica. 88
Jackson BS, Carney LH. (2005). The spontaneous-rate histogram of the auditory nerve can be explained by only two or three spontaneous rates and long-range dependence. Journal of the Association for Research in Otolaryngology : JARO. 6 [PubMed]
Nelson PC, Carney LH. (2004). A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. The Journal of the Acoustical Society of America. 116 [PubMed]
Nelson PC, Carney LH. (2007). Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. Journal of neurophysiology. 97 [PubMed]
Tan Q, Carney LH. (2006). Predictions of formant-frequency discrimination in noise based on model auditory-nerve responses. The Journal of the Acoustical Society of America. 120 [PubMed]
Verhulst S, Altoè A, Vasilkov V. (2018). Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hearing research. 360 [PubMed]
Zhang X, Carney LH. (2005). Analysis of models for the synapse between the inner hair cell and the auditory nerve. The Journal of the Acoustical Society of America. 118 [PubMed]
Zilany MS, Bruce IC, Carney LH. (2014). Updated parameters and expanded simulation options for a model of the auditory periphery. The Journal of the Acoustical Society of America. 135 [PubMed]
Zilany MS, Bruce IC, Nelson PC, Carney LH. (2009). A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. The Journal of the Acoustical Society of America. 126 [PubMed]