Giese KP et al. (1998). Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvbeta1.1-deficient mice with impaired learning. Learning & memory (Cold Spring Harbor, N.Y.). 5 [PubMed]

See more from authors: Giese KP · Storm JF · Reuter D · Fedorov NB · Shao LR · Leicher T · Pongs O · Silva AJ

References and models cited by this paper
References and models that cite this paper

Jaffe DB, Brenner R. (2018). A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. Journal of neurophysiology. 119 [PubMed]

Jaffe DB, Wang B, Brenner R. (2011). Shaping of action potentials by type I and type II large-conductance Ca²+-activated K+ channels. Neuroscience. 192 [PubMed]

Kanold PO, Manis PB. (2001). A physiologically based model of discharge pattern regulation by transient K+ currents in cochlear nucleus pyramidal cells. Journal of neurophysiology. 85 [PubMed]

Shao LR, Halvorsrud R, Borg-Graham L, Storm JF. (1999). The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. The Journal of physiology. 521 Pt 1 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.