Corbit VL et al. (2016). Pallidostriatal Projections Promote ß Oscillations in a Dopamine-Depleted Biophysical Network Model. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]
Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT. (2015). Desynchronization of fast-spiking interneurons reduces ß-band oscillations and imbalance in firing in the dopamine-depleted striatum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]
Grado LL, Johnson MD, Netoff TI. (2018). Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson's disease. PLoS computational biology. 14 [PubMed]
Hahn PJ, McIntyre CC. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of computational neuroscience. 28 [PubMed]
Sailamul P, Jang J, Paik SB. (2017). Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks. Journal of computational neuroscience. 43 [PubMed]
Tripp B, Eliasmith C. (2007). Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]
Wu Z, Guo A, Fu X. (2017). Generation of low-gamma oscillations in a GABAergic network model of the striatum. Neural networks : the official journal of the International Neural Network Society. 95 [PubMed]